scholarly journals On the petrogenesis of Paleoarchean continental crust: U-Pb-Hf isotope and major-trace element constraints from the Bastar Craton, India

2021 ◽  
pp. 120337
Author(s):  
Alessandro Maltese ◽  
Klaus Mezger ◽  
Dewashish Upadhyay ◽  
Jasper Berndt ◽  
Erik E. Scherer
Geosphere ◽  
2021 ◽  
Author(s):  
Charles Verdel ◽  
Matthew J. Campbell ◽  
Charlotte M. Allen

Hafnium (Hf) isotope composition of zircon has been integrated with U-Pb age to form a long-term (>4 b.y.) record of the evolution of the crust. In contrast, trace element compositions of zircon are most commonly utilized in local- or regional-scale petrological studies, and the most noteworthy applications of trace element studies of detrital zircon have been in “fingerprinting” potential source lithologies. The extent to which zircon trace element compositions varied globally over geological time scales (as, for example, zircon U-Pb age abundance, O isotope composition, and Hf isotope composition seem to have varied) has been little explored, and it is a topic that is well suited to the large data sets produced by detrital zircon studies. In this study we present new detrital zircon U-Pb ages and trace element compositions from a continent-scale basin system in Australia (the Centralian Superbasin) that bear directly on the Proterozoic history of Australia and which may be applicable to broader interpretations of plate-tectonic processes in other regions. U-Pb ages of detrital zircon in the Centralian Superbasin are dominated by populations of ca. 1800, 1600, 1200, and 600 Ma, and secular variations of zircon Hf isotope ratios are correlated with some trace element parameters between these major age populations. In particular, elevated εHf(i) (i.e., radiogenic “juvenile” Hf isotope composition) of detrital zircon in the Centralian Superbasin tends to correspond with relatively high values of Yb/U, Ce anomaly, and Lu/Nd (i.e., depletion of light rare earth elements). These correlations seem to be fundamentally governed by three related factors: elemental compatibility in the continental crust versus mantle, the thickness of continental crust, and the contributions of sediment to magmas. Similar trace element versus εHf(i) patterns among a global zircon data set suggest broad applicability. One particularly intriguing aspect of the global zircon data set is a late Neoproterozoic to Cambrian period during which both zircon εHf(i) and Yb/U reached minima, marking an era of anomalous zircon geochemistry that was related to significant contributions from old continental crust.


Lithos ◽  
2011 ◽  
Vol 126 (3-4) ◽  
pp. 355-368 ◽  
Author(s):  
Ryan A. Portner ◽  
Nathan R. Daczko ◽  
Melissa J. Murphy ◽  
Norman J. Pearson

2021 ◽  
Vol 43 (4) ◽  
pp. 50-55
Author(s):  
L.V. SHUMLYANSKYY ◽  
V. KAMENETSKY ◽  
B.V. BORODYNYA

Results of a study of U-Pb and Hf isotope systematics and trace element concentrations in five zircon crystals separated from the Devonian Petrivske kimberlite are reported in the paper. Four zircons have yielded Paleoproterozoic and Archean ages, while one zircon grain gave a Devonian age of 383.6±4.4 Ma (weighted mean 206Pb/238U age). The Precambrian zircons have been derived from terrigenous rocks of the Mykolaivka Suite that is cut by kimberlite, or directly from the Precambrian rock complexes that constitute continental crust in the East Azov. The Devonian zircon crystal has the U-Pb age that corresponds to the age of kimberlite emplacement. It is 14 m.y. younger than zircon megacrysts found in the Novolaspa kimberlite pipe in the same area. In addition, Petrivske zircon is richer in trace elements than its counterparts from the Novolaspa pipe. Petrivske and Novolaspa zircons crystallized from two different proto-kimberlite melts, whereas the process of kimberlite formation was very complex and possibly included several episodes of formation of proto-kimberlite melts, separated by extended (over 10 M.y.) periods of time.


2019 ◽  
Vol 89 ◽  
pp. 219-226 ◽  
Author(s):  
Léo A. Hartmann ◽  
Sérgio B. Baggio ◽  
Matheus P. Brückmann ◽  
Daniel B. Knijnik ◽  
Cristiano Lana ◽  
...  

2021 ◽  
Author(s):  
Arathy Ravindran ◽  
Klaus Mezger ◽  
Sameer Ranjan ◽  
Balakrishnan Srinivasan ◽  
Dewashish Upadhyay ◽  
...  

2020 ◽  
Author(s):  
Peng Wang ◽  
Guochun Zhao ◽  
et al.

Table S1: Zircon U-Pb ages of igneous rocks in the Western Kunlun orogenic belt; Table S2: Results of whole-rock major- (wt%) and trace-element (ppm) data from the three intrusions; Table S3: Zircon U-Pb age of the three intrusions; Table S4: Zircon Hf isotope compositions of the three intrusions; Table S5: Whole-rock Sr-Nd-Pb isotope compositions of the three intrusions; Table S6: Representative analyses of feldspar, amphibole, and pyroxene from the Aqiang and Yutian intrusions; Table S7: Bulk partition coefficients used for trace-element modeling in Figure 14; Figure S1: CL images of zircons showing internal textures and ages of 206Pb/238U (Ma).


2020 ◽  
Vol 61 (3) ◽  
Author(s):  
Yuanyuan Xiao ◽  
Shuo Chen ◽  
Yaoling Niu ◽  
Xiaohong Wang ◽  
Qiqi Xue ◽  
...  

Abstract Continentalcollision zones have been proposed as primary sites of net continental crustal growth. Therefore, studies on syn-collisional granitoids with mafic magmatic enclaves (MMEs) are essential for testing this hypothesis. The Baojishan (BJS) and Qumushan (QMS) syn-collisional plutons in the North Qilian Orogen (NQO) on the northern margin of the Tibetan Plateau have abundant MMEs in sharp contact with host granitoids, sharing similar constituent minerals but with higher modal abundances of mafic minerals in MMEs. The QMS host granitoids have high Sr/Y and La/Yb ratios, showing adakitic compositions, which are differentfrom the BJS granitoids. Based on bulk-rock compositions and zircon U-Pb age-dating, recent studies on these two plutons proposed that MMEs represent cumulates crystallized early from the same magmatic system as their host granitoids, and their parental melts are best understood as andesitic magmas produced by partial melting of the underthrusting upper ocean crust upon collision with some terrigenous sediments under amphibolite facies. Here, we focus on the trace-element geochemistry of the constituent mineral phases of both MMEs and their host granitoids of the QMS and BJS plutons. Weshow that different mineral phases preferentially host different trace elements; for example, most rare earth elements (REEs and Y) reside in titanite (only found in the QMS pluton), amphibole, apatite, epidote and zircon (mostly heavy-REEs); and high-field-strength elements (HFSEs) reside in biotite, titanite, amphibole and zircon. Based on the mineral chemical data, we show that for these two plutons, MMEs are of similar cumulate origin, crystallized from primitive andesitic melts in the early stage of granitoid magmatism. The primitive andesitic melts for these syn-collisional granitoids are most likely produced by the partial melting of the oceanic crust, supporting the hypothesis of continental crustal growth considering the syn-collisional granitoids represent juvenile continental crust. As evidenced by distinct mineral compositions, the two plutons have different parental magma compositions, for example higher TiO2 content and higher Sr/Y and La/Yb ratios in the QMS parental magmas, a signature best understood as being inherited from the source. The higher TiO2 content of the parental magma for the QMS pluton leads to the common presence of titanite in the QMS pluton (absent in the BJS pluton), crystallization of which in turn controls the trace-element (REE, Y, Nb, Ta and others) systematics in the residual melts towards an adakitic signature. Therefore, parental magmas with high TiO2 content and high Sr/Y and La/Yb ratios, as well as their further fractionation of titanite, are important factors in the development of adakitic compositions, as represented by the QMS host granitoids. This model offers a new perspective on the petrogenesis of adakitic rocks. The present study further demonstrates that, in general, mineral chemistry holds essential information for revealing the petrogenesis of granitoid rocks.


Sign in / Sign up

Export Citation Format

Share Document