precambrian rock
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
pp. jgs2020-222
Author(s):  
Graham A. Shields ◽  
Robin A. Strachan ◽  
Susannah M. Porter ◽  
Galen P. Halverson ◽  
Francis A. Macdonald ◽  
...  

The geological time scale before 720 Ma uses rounded absolute ages rather than specific events recorded in rocks to subdivide time. This has led increasingly to mismatches between subdivisions and the features for which they were named. Here we review the formal processes that led to the current time scale, outline rock-based concepts that could be used to subdivide pre-Cryogenian time and propose revisions. An appraisal of the Precambrian rock record confirms that purely chronostratigraphic subdivision would require only modest deviation from current chronometric boundaries, removal of which could be expedited by establishing event-based concepts and provisional, approximate ages for eon-, era- and period-level subdivisions. Our review leads to the following conclusions: 1) the current informal four-fold Archean subdivision should be simplified to a tripartite scheme, pending more detailed analysis, and 2) an improved rock-based Proterozoic Eon might comprise a Paleoproterozoic Era with three periods (early Paleoproterozoic or Skourian, Rhyacian, Orosirian), Mesoproterozoic Era with four periods (Statherian, Calymmian, Ectasian, Stenian) and a Neoproterozoic Era with four periods (pre-Tonian or Kleisian, Tonian, Cryogenian and Ediacaran). These proposals stem from a wide community and could be used to guide future development of the pre-Cryogenian timescale by international bodies.


Geology ◽  
2021 ◽  
Author(s):  
Christine Nims ◽  
Julia Lafond ◽  
Julien Alleon ◽  
Alexis S. Templeton ◽  
Julie Cosmidis

The Precambrian rock record contains numerous examples of microscopic organic filaments and spheres, commonly interpreted as fossil microorganisms. Microfossils are among the oldest traces of life on Earth, making their correct identification crucial to our understanding of early evolution. Yet, spherical and filamentous microscopic objects composed of organic carbon and sulfur can form in the abiogenic reaction of sulfide with organic compounds. Termed organic biomorphs, these objects form under geochemical conditions relevant to the sulfidic environments of early Earth. Furthermore, they adopt a diversity of morphologies that closely mimic a number of microfossil examples from the Precambrian record. Here, we tested the potential for organic biomorphs to be preserved in cherts; i.e., siliceous rocks hosting abundant microbial fossils. We performed experimental silicification of the biomorphs along with the sulfur bacterium Thiothrix. We show that the original morphologies of the biomorphs are well preserved through encrustation by nano-colloidal silica, while the shapes of Thiothrix cells degrade. Sulfur diffuses from the interior of both biomorphs and Thiothrix during silicification, leaving behind empty organic envelopes. Although the organic composition of the biomorphs differs from that of Thiothrix cells, both types of objects present similar nitrogen/carbon ratios after silicification. During silicification, sulfur accumulates along the organic envelopes of the biomorphs, which may promote sulfurization and preservation through diagenesis. Organic biomorphs possessing morphological and chemical characteristics of microfossils may thus be an important component in Precambrian cherts, challenging our understanding of the early life record.


2021 ◽  
Vol 43 (4) ◽  
pp. 50-55
Author(s):  
L.V. SHUMLYANSKYY ◽  
V. KAMENETSKY ◽  
B.V. BORODYNYA

Results of a study of U-Pb and Hf isotope systematics and trace element concentrations in five zircon crystals separated from the Devonian Petrivske kimberlite are reported in the paper. Four zircons have yielded Paleoproterozoic and Archean ages, while one zircon grain gave a Devonian age of 383.6±4.4 Ma (weighted mean 206Pb/238U age). The Precambrian zircons have been derived from terrigenous rocks of the Mykolaivka Suite that is cut by kimberlite, or directly from the Precambrian rock complexes that constitute continental crust in the East Azov. The Devonian zircon crystal has the U-Pb age that corresponds to the age of kimberlite emplacement. It is 14 m.y. younger than zircon megacrysts found in the Novolaspa kimberlite pipe in the same area. In addition, Petrivske zircon is richer in trace elements than its counterparts from the Novolaspa pipe. Petrivske and Novolaspa zircons crystallized from two different proto-kimberlite melts, whereas the process of kimberlite formation was very complex and possibly included several episodes of formation of proto-kimberlite melts, separated by extended (over 10 M.y.) periods of time.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
N. Finke ◽  
R. L. Simister ◽  
A. H. O’Neil ◽  
S. Nomosatryo ◽  
C. Henny ◽  
...  

Abstract Development of Archean paleosols and patterns of Precambrian rock weathering suggest colonization of continents by subaerial microbial mats long before evolution of land plants in the Phanerozoic Eon. Modern analogues for such mats, however, have not been reported, and possible biogeochemical roles of these mats in the past remain largely conceptual. We show that photosynthetic, subaerial microbial mats from Indonesia grow on mafic bedrocks at ambient temperatures and form distinct layers with features similar to Precambrian mats and paleosols. Such subaerial mats could have supported a substantial aerobic biosphere, including nitrification and methanotrophy, and promoted methane emissions and oxidative weathering under ostensibly anoxic Precambrian atmospheres. High C-turnover rates and cell abundances would have made these mats prime locations for early microbial diversification. Growth of landmass in the late Archean to early Proterozoic Eons could have reorganized biogeochemical cycles between land and sea impacting atmospheric chemistry and climate.


Geology ◽  
2019 ◽  
Vol 47 (10) ◽  
pp. 899-903
Author(s):  
Birger Rasmussen ◽  
Janet R. Muhling

Abstract The abundance of Precambrian organic-rich shales, heated beyond the oil and gas window, requires that enormous volumes of hydrocarbons were generated and transported through the ancient crust. However, the former passage of fluid hydrocarbons rarely leaves a trace, so evidence for this process in the early Precambrian rock record is sparse. Here, we report the widespread presence of solidified oil (pyrobitumen) in the iron formation of the 1.88 Ga Gunflint Formation, Ontario, Canada. Petrographic textures indicate at least two phases of oil migration, an early phase marked by pyrobitumen in granules and intergranular pores, synchronous with synsedimentary silica cementation, and a later phase restricted to crosscutting fractures. The paragenetic relationships between the pyrobitumen and iron oxides indicate that oil migration commenced before hematite and some magnetite growth. Our evidence for early oil migration can be explained by petroleum generation during the 1.86–1.80 Ga Penokean orogeny, expelling hydrocarbons generated in the core of the fold-and-thrust belt outwards and updip through the sediments of the Gunflint Formation.


2016 ◽  
Vol 154 (3) ◽  
pp. 609-624 ◽  
Author(s):  
ALESSANDRO IELPI

AbstractModern unvegetated rivers flowing through aeolian-dune fields demonstrate potential as analogues for pre-vegetation fluvial landscapes. A prominent example is contained in the Lençóis Maranhenses of Brazil, a coastal aeolian system hosting the semi-perennial Rio Negro. Remotely sensed images covering c. 45 years display the rhythmic expansion and wind-driven shift of single-threaded and sinuous fluvial trunks alternating with wider braided plains. Sinuous tracts feature mid-channel and bank-attached bars, including expansional point bars with subdued relief. The morphology, accretion and sediment transport of unvegetated point bars in the Rio Negro are compared to the morphodynamics of vegetated meandering rivers. Unvegetated point bars are composed of large coalescent unit bars, lack apparent scroll topography and are preferentially attached to channel banks located on the windward side of the river course. Unvegetated meanders have expansional behaviour related to downwind channel trailing. Point bars maintain an expansional planform despite spatial confinement induced by aeolian dunes. Channel-flow impingement onto cohesion-less banks favours scouring of deep pools along the bar tails, which host bank-collapse deposits subsequently reworked into new bars. Analogies to Precambrian rivers suggest that ancient unvegetated fluvial landscapes were not unequivocally featured by low sinuosity, especially if characterized by a low gradient and stable discharge. This inference is supported by ongoing studies on Proterozoic fluvial–aeolian systems in the Canadian Shield. Lack of scroll topography introduces overlap with low-sinuosity fluvial facies models, underscoring the value of observing ancient fluvial deposits in planform, or along 3D sections where the palaeodrainage of channel bodies and attached bars can be compared.


Sign in / Sign up

Export Citation Format

Share Document