Wavelet neural network (WNN) approach for calibration model building based on gasoline near infrared (NIR) spectra

2008 ◽  
Vol 93 (1) ◽  
pp. 58-62 ◽  
Author(s):  
Roman M. Balabin ◽  
Ravilya Z. Safieva ◽  
Ekaterina I. Lomakina
2021 ◽  
Author(s):  
Rakesh Kumar Kumar Raigar ◽  
Shubhangi Srivast ◽  
Hari Niwas Mishra

Abstract The possibility of rapid estimation of moisture, protein, fat, free fatty acid (FFA), and peroxide value (PV) content in peanut kernel was studied by Fourier transform near-infrared spectroscopy (FTNIR) in the diffuse reflectance mode along with chemometric technic. The moisture, fat and protein of fresh and damaged seeds of peanuts ranging from 3 to 9 %, 45 to 57 % and 23 to 27 % respectively, were used for the calibration model building based on partial least squares (PLS) regression. The peanut samples had major peaks at wavenumbers 53.0853, 4954.98, 4464.03, 4070.85, 74.75.63, 8230.21, and 6178.13 in per cm. First and second derivate mathematical preprocessing was also applied in order to eliminate multiple baselines for different chemical quality parameters of peanut. The FFA had the lowest value of calibration and validation errors (0.579 and 0.738) followed by the protein (0.736 and 0.765). The quality of peanut seeds with lowest root mean square error of cross validation of 0.76 and maximum correlation coefficient (R2) of 96.8 was obtained. The comprehensive results signify that FT-NIR spectroscopy can be used for rapid, non-destructive quantification of quality parameters in peanuts.


2021 ◽  
Author(s):  
Rakesh Kumar Kumar Raigar ◽  
Shubhangi Srivast ◽  
Hari Niwas Mishra

Abstract The possibility of rapid estimation of moisture, protein, fat, free fatty acid (FFA), and peroxide value (PV) content in peanut kernel was studied by Fourier transform near-infrared spectroscopy (FTNIR) in the diffuse reflectance mode along with chemometric technic. The moisture, fat and protein of fresh and damaged seeds of peanuts ranging from 3 to 9 %, 45 to 57 % and 23 to 27 % respectively, were used for the calibration model building based on partial least squares (PLS) regression. The peanut samples had major peaks at wavenumbers 53.0853, 4954.98, 4464.03, 4070.85, 74.75.63, 8230.21, and 6178.13 in per cm. First and second derivate mathematical preprocessing was also applied in order to eliminate multiple baseline for different chemical quality parameters of peanut. The FFA had the lowest value of calibration and validation errors (0.579 and 0.738) followed by the protein (0.736 and 0.765). The quality of peanut seeds with lowest root mean square error of cross validation of 0.76 and maximum correlation coefficient (R2) of 96.8 was obtained. The comprehensive results signify that FT-NIR spectroscopy can be used for rapid, non destructive quantification of quality parameters in peanut.


2007 ◽  
Vol 90 (4) ◽  
pp. 1073-1083 ◽  
Author(s):  
Shirley Anderson ◽  
S Aldana ◽  
M Beggs ◽  
J Birkey ◽  
A Conquest ◽  
...  

Abstract A collaborative study was conducted to evaluate the repeatability and reproducibility of the FOSS FoodScan near-infrared spectrophotometer with artificial neural network calibration model and database for the determination of fat, moisture, and protein in meat and meat products. Representative samples were homogenized by grinding according to AOAC Official Method 983.18. Approximately 180 g ground sample was placed in a 140 mm round sample dish, and the dish was placed in the FoodScan. The operator ID was entered, the meat product profile within the software was selected, and the scanning process was initiated by pressing the start button. Results were displayed for percent (g/100 g) fat, moisture, and protein. Ten blind duplicate samples were sent to 15 collaborators in the United States. The within-laboratory (repeatability) relative standard deviation (RSDr) ranged from 0.22 to 2.67% for fat, 0.23 to 0.92% for moisture, and 0.35 to 2.13% for protein. The between-laboratories (reproducibility) relative standard deviation (RSDR) ranged from 0.52 to 6.89% for fat, 0.39 to 1.55% for moisture, and 0.54 to 5.23% for protein. The method is recommended for Official First Action.


2009 ◽  
Vol 129 (7) ◽  
pp. 1356-1362
Author(s):  
Kunikazu Kobayashi ◽  
Masanao Obayashi ◽  
Takashi Kuremoto

Sign in / Sign up

Export Citation Format

Share Document