Multivariate Calibration Model for a Voltammetric Electronic Tongue Based on a Multiple Output Wavelet Neural Network

Author(s):  
R. Cartas ◽  
L. Moreno-Barón ◽  
A. Merkoçi ◽  
S. Alegret ◽  
M. del Valle ◽  
...  
Author(s):  
Leonardo Fabio León Marenco ◽  
Luiza Pereira Oliveira ◽  
Daniella Lopez Vale ◽  
Maiara Oliveira Salles

Abstract An artificial neural network was used to build models caple of predicting and quantifying vodka adulteration with methanol and/or tap water. A voltammetric electronic tongue based on gold and copper microelectrodes was used, and 310 analyses were performed. Vodkas were adulterated with tap water (5 to 50% (v/v)), methanol (1 to 13% (v/v)), and with a fixed addition of 5% methanol and tap water varying from 5 to 50% (v/v). The classification model showed 99.5% precision, and it correctly predicted the type of adulterant in all samples. Regarding the regression model, the root mean squared error was 3.464% and 0.535% for the water and methanol addition, respectively, and the prediction of the adulterant content presented an R2 0.9511 for methanol and 0.9831 for water adulteration.


2009 ◽  
Vol 129 (7) ◽  
pp. 1356-1362
Author(s):  
Kunikazu Kobayashi ◽  
Masanao Obayashi ◽  
Takashi Kuremoto

Sign in / Sign up

Export Citation Format

Share Document