Analysis of chemical compositions contributable to chemical oxygen demand (COD) of oilfield produced water

Chemosphere ◽  
2006 ◽  
Vol 62 (2) ◽  
pp. 322-331 ◽  
Author(s):  
Jinren Lu ◽  
Xiulin Wang ◽  
Baotian Shan ◽  
Ximing Li ◽  
Weidong Wang
Author(s):  
Omer Al Haiqi ◽  
Abdurahman Hamid Nour ◽  
Bamidele Victor Ayodele ◽  
Rushdi Bargaa

This study investigates the interaction effects of process variables on photocatalytic phenol degradation in oil produce water. A series of ZnO/Fe2O3 nanocomposite prepared using the sol-gel method and calcined at a temperature range of 400-600 oC were employed as photocatalysts. The characterization analysis using different instrument techniques revealed that the ZnO/Fe2O3 nanocomposites have suitable physicochemical properties as photocatalysts. The photocatalytic activity of the ZnO/Fe2O3 nanocomposite was examined in photo-reactor considering the degradation of the phenol and the reduction in chemical oxygen demand (COD) in the oilfield produced water under direct sunlight. It was ascertained that process variables such as irradiation time, calcination temperature of the ZnO/Fe2O3 nanocomposites, and the ZnO/Fe2O3 nanocomposites concentration significantly influenced the chemical oxygen demand and phenol removal. Based on the analysis of variance (ANOVA), the effects of the process variables on the phenol and COD removal can be ranked as irradiation time (p-value < 0.0001) > calcination temperature of the ZnO/Fe2O3 nanocomposite (p-value = 0.0003) > ZnO/Fe2O3 concentration (p-value = 0.0013). The interaction between the parameters was observed to have a substantial effect on COD and phenol removal. However, the interaction effect that produced the most significant influence on the COD and phenol removal was recorded between the irradiation time and the ZnO/Fe2O3 nanocomposite concentration.


Author(s):  
Adel Abdelkader ◽  
Basem M. Hussien ◽  
Eman M. Fawzy ◽  
Asma A. Ibrahim

AbstractIn the present study, high surface area boehmite nanopowder was recovered from aluminum cans waste. The sodium aluminate solution was first prepared by dissolving aluminum cans in NaOH solution and then, H2O2 solution was added to precipitate boehmite. The prepared boehmite was characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption–desorption techniques. The thermal stability of the boehmite sample was investigated using thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. The feasibility of using the prepared boehmite powder as a new low-cost adsorbent for the treatment of oilfield produced water was investigated. For comparison, commercial activated carbon was used for the treatment of the produced water under the same conditions. The efficiency of both of boehmite and activated carbon in the treatment of produced water was determined by monitoring the values of a number of pollution indicators [i.e. turbidity, sulfides, sulfates, total organic carbon (TOC), total petroleum hydrocarbon (TPH), and chemical oxygen demand (COD)] before and after the treatment. The boehmite powder showed very good efficiency in the treatment of the produced water, which is very close to that of commercial activated carbon under the same conditions. The effect of adsorbent dose, treatment time, and pH of the media on the adsorption efficiency of both of boehmite and activated carbon was examined at room temperature using chemical oxygen demand as a pollution indicator. The maximum capacity for COD reduction was 69.6% for boehmite and 83.5% for activated carbon at 40 g/l adsorbent dosage, pH7, and 24-h contact time. Graphic abstract


2011 ◽  
Vol 361-363 ◽  
pp. 593-597
Author(s):  
Feng He ◽  
Peng Cheng Fu ◽  
Chun Ming Xu

Biological treatment of heavy crude oil production wastewater is well-established method for remediation of these wastes. We have developed effective biological treatments by (1) utilizing microbes with high oil-degrading abilities, (2) allowing greater organic loads while increasing both process stability and the resistance to shock loading, (3) minimizing the production of waste sludge byproducts, and (4) adopting anaerobic and aerobic biological processes to improve the biodegradation of the wastewater. Fixed-film bioreactors with 15h hydraulic retention times have decreased chemical oxygen demand by 74.8%, total suspended solids by 90.9%, oil by 80.6%, and phenols and sulfides by 100%. The results with an in situ pilot system show that the bioreactor's hydrolytic acidulation and contact oxidation tanks are suitable for treating oilfield wastewater, and that water quality after treatment fully meets national drainage standards.


2019 ◽  

<p>Oilfield wastewater or produced water is a complex mixture contains oil, organic and inorganic matter and other compounds dissolved in water that ranges from fresh to brine. Discharging produced water pollute soil surface and underground water and create environment hassle. The objective of this study is to investigate and summarize the novel method of fluidization processes, used for the treatment of oilfield produced water and oil refinery wastewater. Characteristics of oilfield produced water and oil refinery wastewater from different field and various methods for treating these wastewaters are discussed. Oilfield produced water and oil refinery wastewater are strongly acidic (pH 3-4), have a high chemical oxygen demand (1200-2600 mg/L), high polyphenol content (23 mg/L) and are highly variable. Primary attention is focused on the fluidization treatment of oilfield produced water and oil refinery wastewater, mainly by inverse fluidization. Finally, areas where further research and attention are required are identified.</p>


2014 ◽  
Vol 13 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Ghasem Najafpour Darzi ◽  
Reza Katal ◽  
Hossein Zare ◽  
Seyed Omid Rastegar ◽  
Poorya Mavaddat

2018 ◽  
Vol 69 (10) ◽  
pp. 2940-2952 ◽  
Author(s):  
Martina Zelenakova ◽  
Pavol Purcz ◽  
Radu Daniel Pintilii ◽  
Peter Blistan ◽  
Petr Hlustik ◽  
...  

Evaluating trends in water quality indicators is a crucial issue in integrated water resource management in any country. In this study eight chemical and physical water quality indicators were analysed in seven river profiles in the River Laborec in eastern Slovakia. The analysed water quality parameters were biochemical oxygen demand (BOD5), chemical oxygen demand (CODCr), pH, temperature (t), ammonium nitrogen (NH4+-N), nitrite nitrogen (NO2--N), nitrate nitrogen (NO3--N), and total phosphorus (TP). Data from the monitored indicators were provided by the Ko�ice branch of the Slovakian Water Management Company, over a period of 15 years from 1999 to 2013. Mann�Kendall non-parametric statistical test was used for the trend analysis. Biochemical and chemical oxygen demand, ammonium and nitrite nitrogen content exhibit decreasing trends in the River Laborec. Decreasing agricultural activity in the area has had a significant impact on the trends in these parameters. However, NO2--N was the significant parameter of water quality because it mostly exceeds the limit value set in Slovak legislation, Regulation No. 269/2010 Coll. In addition, water temperature revealed an increasing trend which could be caused by global increase in air temperature. These results indicate that human activity significantly impacts the water quality.


Sign in / Sign up

Export Citation Format

Share Document