Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide

Chemosphere ◽  
2017 ◽  
Vol 186 ◽  
pp. 977-985 ◽  
Author(s):  
Xiaoning Liu ◽  
Kezhen Ying ◽  
Guangyao Chen ◽  
Canwei Zhou ◽  
Wen Zhang ◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1654 ◽  
Author(s):  
Marcin Dębowski ◽  
Paulina Rusanowska ◽  
Marcin Zieliński ◽  
Magda Dudek ◽  
Zdzisława Romanowska-Duda

2020 ◽  
Vol 95 (6) ◽  
pp. 1790-1799 ◽  
Author(s):  
Matthew Kube ◽  
Ben Spedding ◽  
Li Gao ◽  
Linhua Fan ◽  
Felicity Roddick

2002 ◽  
Vol 46 (8) ◽  
pp. 83-90 ◽  
Author(s):  
G. Schumacher ◽  
I. Sekoulov

The potential in polishing secondary effluent by an algal biofilm composed of different green and bluegreen algae was investigated. During the photosynthesis process of algal biofilm oxygen was produced while dissolved carbon dioxide was consumed. This led to an increasing pH due to the change of the carbon dioxide equilibrium in water. The high pH caused precipitation of dissolved phosphates. The attached algae took up nitrogen and phosphorus during the growth of biomass. In addition to nutrient removal, an extensive removal of faecal bacteria was observed probably caused by adsorption of the algal biofilm and by photo-oxidation involving dissolved oxygen. The experimental results suggest that a low-cost, close to nature process especially for small wastewater treatment plants for nutrient removal and bacteria reduction can be developed with the aid of an algal biofilm.


2003 ◽  
Vol 47 (11) ◽  
pp. 195-202 ◽  
Author(s):  
G. Schumacher ◽  
T. Blume ◽  
I. Sekoulov

Attached algae settlement is frequently observed in effluents of wastewater treatment plants at locations with sufficient sunlight. For their growth they incorporate nutrients and the surface of the algal biofilm accumulates suspended solids from the clarified wastewater. During the photosynthesis process of algal biofilms oxygen is produced while dissolved carbon dioxide is consumed. This led to an increasing pH due to the change of the carbon dioxide equilibrium in water. The high pH causes precipitation of dissolved phosphates. Furthermore an extensive removal of faecal bacteria was observed in the presence of algae, which may be caused by the activity of algae. The experimental results indicate the high potential of these attached algae for polishing secondary effluent of wastewater treatment plants. Especially for small wastewater treatment plants a post connected stage for nutrient removal and bacteria reduction can be developed with the aid of an algal biofilm.


Sign in / Sign up

Export Citation Format

Share Document