scholarly journals An Inhibitor of Gram-Negative Bacterial Virulence Protein Secretion

2008 ◽  
Vol 4 (4) ◽  
pp. 325-336 ◽  
Author(s):  
Heather B. Felise ◽  
Hai V. Nguyen ◽  
Richard A. Pfuetzner ◽  
Kathleen C. Barry ◽  
Stona R. Jackson ◽  
...  
mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Joel D. Ernst ◽  
Amber Cornelius ◽  
Miriam Bolz

ABSTRACTSecretion of specific proteins contributes to pathogenesis and immune responses in tuberculosis and other bacterial infections, yet the kinetics of protein secretion and fate of secreted proteinsin vivoare poorly understood. We generated new monoclonal antibodies that recognize theMycobacteriumtuberculosissecreted protein Ag85B and used them to establish and characterize a sensitive enzyme-linked immunosorbent assay (ELISA) to quantitate Ag85B in samples generatedin vitroandin vivo. We found that nutritional or culture conditions had little impact on the secretion of Ag85B and that there is considerable variation in Ag85B secretion by distinct strains in theM. tuberculosiscomplex: compared with the commonly used H37Rv strain (lineage 4),Mycobacteriumafricanum(lineage 6) secretes less Ag85B, and two strains from lineage 2 secrete more Ag85B. We also used the ELISA to determine that the rate of secretion of Ag85B is 10- to 100-fold lower than that of proteins secreted by Gram-negative and Gram-positive bacteria, respectively. ELISA quantitation of Ag85B in lung homogenates ofM. tuberculosisH37Rv-infected mice revealed that although Ag85B accumulates in the lungs as the bacterial population expands, the amount of Ag85B per bacterium decreases nearly 10,000-fold at later stages of infection, coincident with the development of T cell responses and arrest of bacterial population growth. These results indicate that bacterial protein secretionin vivois dynamic and regulated, and quantitation of secreted bacterial proteins can contribute to the understanding of pathogenesis and immunity in tuberculosis and other infections.IMPORTANCEBacterial protein secretion contributes to host-pathogen interactions, yet the process and consequences of bacterial protein secretion during infection are poorly understood. We developed a sensitive ELISA to quantitate a protein (termed Ag85B) secreted byM. tuberculosisand used it to find that Ag85B secretion occurs with slower kinetics than for proteins secreted by Gram-positive and Gram-negative bacteria and that accumulation of Ag85B in the lungs is markedly regulated as a function of the bacterial population density. Our results demonstrate that quantitation of bacterial proteins during infection can reveal novel insights into host-pathogen interactions.


2013 ◽  
Vol 56 (4) ◽  
pp. 1418-1430 ◽  
Author(s):  
Nicolas Desroy ◽  
Alexis Denis ◽  
Chrystelle Oliveira ◽  
Dmytro Atamanyuk ◽  
Sophia Briet ◽  
...  

1989 ◽  
Vol 264 (29) ◽  
pp. 17462-17468
Author(s):  
C d'Enfert ◽  
I Reyss ◽  
C Wandersman ◽  
A P Pugsley

2005 ◽  
Vol 18 (7) ◽  
pp. 626-633 ◽  
Author(s):  
Melisa T. S. Lim ◽  
Barbara N. Kunkel

In order to cause disease on plants, gram-negative phytopathogenic bacteria introduce numerous virulence factors into the host cell in order to render host tissue more hospitable for pathogen proliferation. The mode of action of such bacterial virulence factors and their interaction with host defense pathways remain poorly understood. avrRpt2, a gene from Pseudomonas syringae pv. tomato JL1065, has been shown to promote the virulence of heterologous P. syringae strains on Arabidopsis thaliana. However, the contribution of avrRpt2 to the virulence of JL1065 has not been examined previously. We show that a mutant derivative of JL1065 that carries a disruption in avrRpt2 is impaired in its ability to cause disease on tomato (Lycopersicon esculentum), indicating that avrRpt2 also acts as a virulence gene in its native strain on a natural host. The virulence activity of avrRpt2 was detectable on tomato lines that are defective in either ethylene perception or the accumulation of salicylic acid, but could not be detected on a tomato mutant insensitive to jasmonic acid. The enhanced virulence conferred by the expression of avrRpt2 in JL1065 was not associated with the suppression of several defense-related genes induced during the infection of tomato.


Sign in / Sign up

Export Citation Format

Share Document