Optimizing profit and reliability using a bi-objective mathematical model for oil and gas supply chain under disruption risks

2021 ◽  
pp. 107849
Author(s):  
Seyed Babak Ebrahimi ◽  
Ehsan Bagheri
2021 ◽  
Author(s):  
Md Abdur Rahman ◽  
Syed M. Belal

Abstract Keeping track of the oil and gas supply chain is challenging task as the route and transportation requires sophisticated security environment - both physical systems’ and IT systems’ security. Thanks to the recent advancement in IoT, specialized sensors can keep track of the required supply chain environment. With the help of blockchain, the supply chain data can be immutably saved for further sharing with stakeholders. Due to the introduction of AI as an embedded element within 6G networks, the end-to-end supply chain process can now be automated for safety, security, and efficiency purposes. By leveraging 6G, AI, blockchain, and IoT, the supply chain data during the transportation or at rest can be monitored for any changed environment during the movement of the ship through national or international routes. In this paper, we study the requirements of such intelligent and secure supply chain management system conducive to the oil and gas industry. We also show our proof-of-concept implementation and initial test results. Our obtained results show promising prospect of the current system to be deployed to safeguard the oil and gas supply chain.


Science ◽  
2018 ◽  
pp. eaar7204 ◽  
Author(s):  
Ramón A. Alvarez ◽  
Daniel Zavala-Araiza ◽  
David R. Lyon ◽  
David T. Allen ◽  
Zachary R. Barkley ◽  
...  

Author(s):  
Ahmed M. Ghaithan ◽  
Ahmed Attia ◽  
Salih O. Duffuaa

The oil and gas networks are overlapped because of the inclusion of associated gas in crude oil. This necessitates the integration and planning of oil and gas supply chain together. In recent years, hydrocarbon market has experienced high fluctuation in demands and prices which leads to considerable economic disruptions. Therefore, planning of oil and gas supply chain, considering market uncertainty is a significant area of research. In this regard, this study develops a multi-objective stochastic optimization model for tactical planning of downstream segment of oil and natural gas supply chain under uncertainty of price and demand of petroleum products. The proposed model was formulated based on a two-stage stochastic programming approach with a finite number of realizations. The proposed model helps to assess various trade-offs among the selected goals and guides decision maker(s) to effectively manage oil and natural gas supply chain. The applicability and the utility of the proposed model has been demonstrated using the case of Saudi Arabia oil and gas supply chain. The model is solved using the improved augmented ε-constraint algorithm. The impact of uncertainty of price and demand of petroleum products on the obtained results was investigated. The Value of Stochastic Solution (VSS) for total cost, total revenue, and service level reached a maximum of 12.6 %, 0.4 %, and 6.2% of wait-and see solutions, respectively. Therefore, the Value of the Stochastic Solution proved the importance of using stochastic programming approach over deterministic approach. In addition, the obtained results indicate that uncertainty in demand has higher impact on the oil and gas supply chain performance than the price.


2015 ◽  
Vol 15 (1) ◽  
pp. 83-92
Author(s):  
Diana Uspanova ◽  
Oluchi Uwannah ◽  
Liang-Chieh Cheng
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document