scholarly journals Proposal of “open-loop” tracking interferometer for machine tool volumetric error measurement

CIRP Annals ◽  
2014 ◽  
Vol 63 (1) ◽  
pp. 501-504 ◽  
Author(s):  
S. Ibaraki ◽  
K. Nagae ◽  
G. Sato
2013 ◽  
Vol 284-287 ◽  
pp. 1723-1728
Author(s):  
Shih Ming Wang ◽  
Han Jen Yu ◽  
Hung Wei Liao

Error compensation is an effective and inexpensive way that can further enhance the machining accuracy of a multi-axis machine tool. The volumetric error measurement method is an essential of the error compensation method. The measurement of volumetric errors of a 5-axis machine tool is very difficult to be conducted due to its complexity. In this study, a volumetric-error measurement method using telescoping ball-bar was developed for the three major types of 5-axis machines. With the use of the three derived error models and the two-step measurement procedures, the method can quickly determine the volumetric errors of the three types of 5-axis machine tools. Comparing to the measurement methods currently used in industry, the proposed method provides the advantages of low cost, easy setup, and high efficiency.


2014 ◽  
Vol 941-944 ◽  
pp. 2219-2223 ◽  
Author(s):  
Guo Juan Zhao ◽  
Lei Zhang ◽  
Shi Jun Ji ◽  
Xin Wang

In this paper, a new method is presented for the identification of machine tool component errors. Firstly, the Non-Uniform Rational B-spline (NURBS) is established to represent the geometric component errors. The individual geometric errors of the motion parts are measured by laser interferometer. Then, the volumetric error for a machine tool with three motion parts is modeled based on the screw theory. Finally, the simulations and experiments are conducted to confirm the validity of the proposed method.


2018 ◽  
Vol 98 (5-8) ◽  
pp. 1791-1805 ◽  
Author(s):  
Qingzhao Li ◽  
Wei Wang ◽  
Yunfeng Jiang ◽  
Hai Li ◽  
Jing Zhang ◽  
...  

2019 ◽  
Vol 36 (4) ◽  
pp. 1364-1383 ◽  
Author(s):  
Wilma Polini ◽  
Andrea Corrado

Purpose The purpose of this paper is to model how geometric errors of a machined surface (or manufacturing errors) are related to locators’ error, workpiece form error and machine tool volumetric error. A kinematic model is presented that puts into relationship the locator error, the workpiece form deviations and the machine tool volumetric error. Design/methodology/approach The paper presents a general and systematic approach for geometric error modelling in drilling because of the geometric errors of locators positioning, of workpiece datum surface and of machine tool. The model can be implemented in four steps: (1) calculation of the deviation in the workpiece reference frame because of deviations of locator positions; (2) evaluation of the deviation in the workpiece reference frame owing to form deviations in the datum surfaces of the workpiece; (3) formulation of the volumetric error of the machine tool; and (4) combination of those three models. Findings The advantage of this approach lies in that it enables the source errors affecting the drilling accuracy to be explicitly separated, thereby providing designers and/or field engineers with an informative guideline for accuracy improvement through suitable measures, i.e. component tolerancing in design, machining and so on. Two typical drilling operations are taken as examples to illustrate the generality and effectiveness of this approach. Research limitations/implications Some source errors, such as the dynamic behaviour of the machine tool, are not taken into consideration, which will be modelled in practical applications. Practical implications The proposed kinematic model may be set by means of experimental tests, concerning the industrial specific application, to identify the values of the model parameters, such as standard deviation of the machine tool axes positioning and rotational errors. Then, it may be easily used to foresee the location deviation of a single or a pattern of holes. Originality/value The approaches present in the literature aim to model only one or at most two sources of machining error, such as fixturing, machine tool or workpiece datum. This paper goes beyond the state of the art because it considers the locator errors together with the form deviation on the datum surface into contact with the locators and, then, the volumetric error of the machine tool.


2019 ◽  
Vol 20 (6) ◽  
pp. 605
Author(s):  
Fabien Viprey ◽  
Hichem Nouira ◽  
Sylvain Lavernhe ◽  
Christophe Tournier

This research work deals with the geometric modelling of 5-axis machine tool based on a standardised parameterisation of geometric errors with the aim to decrease the volumetric error in the workspace. The identification of the model’s parameters is based on the development of a new standard thermo-invariant material namely the Multi-Feature Bar. Thanks to its calibration and a European intercomparison, it now provides a direct metrological traceability to the SI metre for dimensional measurement on machine tool in a hostile environment. The identification of three intrinsic parameters of this standard, coupled with a measurement procedure ensures a complete and traceable identification of motion errors of linear axes. An identification procedure of location and orientation errors of axes is proposed by probing a datum sphere in the workspace and minimising the time drift of the structural loop and the effects of the previously identified motion errors. Finally, the developed model partially identified, allows the characterisation of 95% of the measured volumetric error. Therefore, the mean volumetric error not characterised by the model only amounts to 8 μm.


Sign in / Sign up

Export Citation Format

Share Document