Effects of Gaussian Thermal Fluctuations on the Thermodynamic of Microtubules in Landau-Ginzburg-Wilson Model

Author(s):  
A.J. FOTUE ◽  
M.C. EKOSSO ◽  
H. FOTSIN ◽  
L.C. FAI
2008 ◽  
Vol 44 (3) ◽  
pp. 223-236 ◽  
Author(s):  
K. Ērglis ◽  
L. Alberte ◽  
A. Cēbers

Author(s):  
Serge Reynaud ◽  
Astrid Lambrecht

The Casimir force is an effect of quantum vacuum field fluctuations, with applications in many domains of physics. The ideal expression obtained by Casimir, valid for perfect plane mirrors at zero temperature, has to be modified to take into account the effects of the optical properties of mirrors, thermal fluctuations, and geometry. After a general introduction to the Casimir force and a description of the current state of the art for Casimir force measurements and their comparison with theory, this chapter presents pedagogical treatments of the main features of the theory of Casimir forces for one-dimensional model systems and for mirrors in three-dimensional space.


Author(s):  
Sauro Succi

Fluid flow at nanoscopic scales is characterized by the dominance of thermal fluctuations (Brownian motion) versus directed motion. Thus, at variance with Lattice Boltzmann models for macroscopic flows, where statistical fluctuations had to be eliminated as a major cause of inefficiency, at the nanoscale they have to be summoned back. This Chapter illustrates the “nemesis of the fluctuations” and describe the way they have been inserted back within the LB formalism. The result is one of the most active sectors of current Lattice Boltzmann research.


2000 ◽  
Vol 15 (15) ◽  
pp. 2269-2288
Author(s):  
SANATAN DIGAL ◽  
RAJARSHI RAY ◽  
SUPRATIM SENGUPTA ◽  
AJIT M. SRIVASTAVA

We demonstrate the possibility of forming a single, large domain of disoriented chiral condensate (DCC) in a heavy-ion collision. In our scenario, rapid initial heating of the parton system provides a driving force for the chiral field, moving it away from the true vacuum and forcing it to go to the opposite point on the vacuum manifold. This converts the entire hot region into a single DCC domain. Subsequent rolling down of the chiral field to its true vacuum will then lead to emission of a large number of (approximately) coherent pions. The requirement of suppression of thermal fluctuations to maintain the (approximate) coherence of such a large DCC domain, favors three-dimensional expansion of the plasma over the longitudinal expansion even at very early stages of evolution. This also constrains the maximum temperature of the system to lie within a window. We roughly estimate this window to be about 200–400 MeV. These results lead us to predict that extremely high energy collisions of very small nuclei (possibly hadrons) are better suited for observing signatures of a large DCC. Another possibility is to focus on peripheral collisions of heavy nuclei.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
M. E. Caplan ◽  
C. R. Forsman ◽  
A. S. Schneider
Keyword(s):  

2021 ◽  
Vol 69 (1) ◽  
Author(s):  
Yunong Zhou

AbstractIn this study, we investigate the effects of thermal fluctuations on the generalized Johnson–Kendall–Roberts (JKR) model. We show that the distribution of pull-off forces in this model is similar to that of the Bradley model, and is also consistent with the experiment result observed in Wierez-Kien et al. (Nanotechnology 29(15):155704 2018). Increasing temperature leads to a broadening of the distribution, while leads to a reduction of the pull-off force. Additionally, the pull-off force, which is separated into an athermal term and a thermal-induced reduction term, is measured by using spring velocity ranging over 5 orders of magnitude. We show that for compliant spring, the pull-off force is significantly enhanced with increasing velocity, which is mainly attributed to the contribution of the thermal-induced reduction term, while the athermal term is barely sensitive to changes in velocity.


Soft Matter ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 102-112
Author(s):  
Mohammadhosein Razbin ◽  
Alireza Mashaghi

The analytic expressions for the probability densities associated with the thermal fluctuations and the elasticity of the structure are obtained.


Sign in / Sign up

Export Citation Format

Share Document