scholarly journals Co-contraction recruitment and spinal load during isometric trunk flexion and extension

2005 ◽  
Vol 20 (10) ◽  
pp. 1029-1037 ◽  
Author(s):  
Kevin P. Granata ◽  
Patrick E. Lee ◽  
Timothy C. Franklin
Author(s):  
Kevin Granata ◽  
Patrick Lee ◽  
Tim Franklin

Pushing and pulling tasks account for 20% of occupational low-back injury claims but few studies have investigated the neuromuscular control of the spine during these tasks. Primary torso muscle groups recruited during pushing tasks include the rectus abdominis and external obliques. However, theoretical analyses suggest that co-contraction of the paraspinal muscles is necessary to stabilize the spine during flexion exertions. A biomechanical model was implemented to estimate co-contraction and spinal load from measured surface EMG and trunk moment data recorded during trunk flexion and extension exertions. Results demonstrate that co-contraction during flexion exertions was approximately twice the value of co-contraction during extension. Co-contraction accounted for up to 47% of the total spinal load during flexion exertions and spinal load attributed to co-contraction was nearly 50% greater during flexion than during extension exertions despite similar levels of trunk moment. Results underscore the need to consider neuromuscular recruitment when evaluating biomechanical risks. Keywords: Spine; Co-contraction; Push; Manual Materials Handling; Biomechanics


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Luciana Bahia Gontijo ◽  
Polianna Delfino Pereira ◽  
Camila Danielle Cunha Neves ◽  
Ana Paula Santos ◽  
Dionis de Castro Dutra Machado ◽  
...  

Introduction. The proprioceptive neuromuscular facilitation (PNF) is a physiotherapeutic concept based on muscle and joint proprioceptive stimulation. Among its principles, the irradiation is the reaction of the distinct regional muscle contractions to the position of the application of the motions.Objective. To investigate the presence of irradiated dorsiflexion and plantar flexion and the existing strength generated by them during application of PNF trunk motions.Methods. The study was conducted with 30 sedentary and female volunteers, the PNF motions of trunk flexion, and extension with the foot (right and left) positioned in a developed equipment coupled to the load cell, which measured the strength irradiated in Newton.Results. Most of the volunteers irradiated dorsal flexion in the performance of the flexion and plantar flexion during the extension motion, both presenting an average force of 8.942 N and 10.193 N, respectively.Conclusion. The distal irradiation in lower limbs became evident, reinforcing the therapeutic actions to the PNF indirect muscular activation.


2008 ◽  
Vol 23 (5) ◽  
pp. 520-526 ◽  
Author(s):  
Mickaël Ripamonti ◽  
Denis Colin ◽  
Abderrahmane Rahmani

2016 ◽  
Vol 32 ◽  
pp. 274-279 ◽  
Author(s):  
Jie Zhou ◽  
Xiaopeng Ning ◽  
Fadi Fathallah

Ergonomics ◽  
1985 ◽  
Vol 28 (6) ◽  
pp. 883-893 ◽  
Author(s):  
KATSUNORI Tanti ◽  
TADASHI MASUDA

Author(s):  
Jie Zhou ◽  
Xiaopeng Ning

Lumbopelvic coordination describes the relative contributions of lumbar and pelvis to the total trunk flexion/extension motion, which has been identified as a major influential factor to spinal loading. The current study investigated the differences in lumbopelvic coordination between trunk flexion and extension. Thirteen subjects performed pace-controlled trunk flexion/extension motions in the sagittal plane while lumbopelvic continuous relative phase and phase variability were quantified. The results demonstrated that compared with trunk extension, lumbopelvic continuous relative phase and phase variability were 28% and 117% greater in trunk flexion motion, respectively, which indicated a more anti-phase and unstable coordination pattern. Quantifying these coordination patterns helps identifying abnormal patterns and serves as normative benchmarks during low back pain rehabilitation.


Motricidade ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 49
Author(s):  
Rafaella Stradiotto Bernardelli ◽  
Auristela Duarte de Lima Moser ◽  
Gerson Linck Bichinho

The spine has a direct influence on postural alignment and movement of the whole body. Lumbar muscles constitute a critical element in trunk performance while weakness of these muscles has been associated with low back pain. Hence, strength profiling of trunk muscles is clinically significant. The objective of this research was to determine, by means of isokinetic dynamometry, peak moment (PM) values during isokinetic concentric and eccentric efforts of trunk flexion and extension in sedentary asymptomatic individuals. The sample consisted of 100 asymptomatic sedentary volunteers, fifty from each sex, aging 22.2 ± 3.3 years old. The sample underwent concentric and eccentric isokinetic assessment of the trunk flexor and extensor muscles at an angular velocity of 60 degrees/sec for each mode of contraction. The mean concentric PM for trunk flexion and extension were 139.5 and 166.6 Nm, respectively, while the respective values for the eccentric efforts were 188.8 and 221.2 Nm. The PM flexion/extension ratio was 0.87 and 0.89 for the concentric and eccentric efforts, respectively. These values of concentric and eccentric PM and PM ratio will serve as comparison parameters for future research, as well as for the assessment of symptomatic patients, and to help in the creation of the trunk muscle rebalance protocols.


2018 ◽  
Vol 23 (04) ◽  
pp. 496-500 ◽  
Author(s):  
Kanchai Malungpaishope ◽  
Somsak Leechavengvongs ◽  
Patamaporn Ratchawatana ◽  
Akaradech Pitakveerakul ◽  
Sarun Jindahara ◽  
...  

Background: To report the results of restoring the elbow flexion and extension in patients with total brachial root avulsion injuries by simultaneous transfer of the phrenic nerve to the nerve to the biceps and three intercostal nerves to the nerve of the long head of the triceps. Methods: Ten patients with total brachial root avulsion injuries underwent the spinal accessory nerve transfer to the suprascapular nerve for shoulder reconstruction. Simultaneous transfer of the phrenic nerve to the nerve to the biceps via the sural nerve graft and three intercostal nerves to the nerve of the long head of the triceps was done for restoration of the elbow flexion and extension. Trunk flexion exercise program was used for all patients postoperatively. The mean follow up period was 36 months. Results: For elbow flexion, there were two M4, seven M3, and one M1. For elbow extension, there were three M4, four M3, two M2, and one M1. No patient demonstrated a respiratory problem clinically postoperatively. The average FVC% decreased to 61% of the predicted value at 24 months after surgery. Conclusions: The simultaneous nerve transfer using the phrenic nerve to the nerve to the biceps and 3 intercostal nerves to the nerve of the long head of the triceps with postoperative trunk flexion exercise provide a comparable result for restoration of elbow function in total brachial plexus root avulsion injury. The patients who appear to have a respiratory problem and are unable to comply with the post-operative respiratory muscles training should be contraindicated for this simultaneous transfer.


Sign in / Sign up

Export Citation Format

Share Document