coordination pattern
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 52)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Christoph Ludwig Teske ◽  
Huayna Terraschke ◽  
Sebastian Mangelsen ◽  
Wolfgang Bensch

Abstract The title compounds were prepared by precipitation from acidic solutions of the reactants in acetone/water. Bi(S2CNH2)2Cl (1) crystallizes in the non-centrosymmetric trigonal space group P32 with a = 8.6121(3) and c = 11.1554(4) Å, Z = 3; Bi(S2NH2)2SCN (2) in P21/c (monoclinic) with a = 5.5600(2), b = 14.3679(5), c = 12.8665(4) Å, and β = 90.37(3)°. In the crystal structure of 1 Bi3+ is in a sevenfold coordination of two bidentate and one monodentate S2CHNH2 − anions with an asymmetric coordination pattern of five Bi–S and two Bi–Cl− bonds. The linkage of these polyhedra via common Cl–S edges leads to a 1D polymeric structure with undulated chains propagating in the direction [001]. These chains are linked by strong and medium strong hydrogen bonds forming the 3D crystal structure. In the crystal structure of 2 the Bi3+ cation is in an eightfold coordination. The polyhedron can be described as a significantly distorted tetragonal anti-prism, capped by an additional S atom. Two of these prisms share a common quadrilateral face to form a “prism-double” (Bi2S10N2). These building units are linked by common edges, and the resulting 1D infinite angulated chains propagate along [100]. By contrast to organo-dithiocarbamate compounds, where C–H···X bridges are dominant, the interchain connections in the crystal structures of 1 and 2 are formed exclusively via N–H···S, N–H···Cl, and N–H···N interactions, generating the 3D networks. A significant eccentricity of the Bi3+ cation in the crystal structures of both complexes is observed. Both compounds emit light in the orange range of the electromagnetic spectrum.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ana Diaz-Artiles ◽  
Yiyu Wang ◽  
Madison M. Davis ◽  
Renee Abbott ◽  
Nathan Keller ◽  
...  

Many of the activities associated with spaceflight require individuals to coordinate actions between the limbs (e.g., controlling a rover, landing a spacecraft). However, research investigating the influence of gravity on bimanual coordination has been limited. The current experiment was designed to determine an individual’s ability to adapt to altered-gravity when performing a complex bimanual force coordination task, and to identify constraints that influence coordination dynamics in altered-gravity. A tilt table was used to simulate gravity on Earth [90° head-up tilt (HUT)] and microgravity [6° head-down tilt (HDT)]. Right limb dominant participants (N = 12) were required to produce 1:1 in-phase and 1:2 multi-frequency force patterns. Lissajous information was provided to guide performance. Participants performed 14, 20 s trials at 90° HUT (Earth). Following a 30-min rest period, participants performed, for each coordination pattern, two retention trials (Earth) followed by two transfer trials in simulated microgravity (6° HDT). Results indicated that participants were able to transfer their training performance during the Earth condition to the microgravity condition with no additional training. No differences between gravity conditions for measures associated with timing (interpeak interval ratio, phase angle slope ratio) were observed. However, despite the effective timing of the force pulses, there were differences in measures associated with force production (peak force, STD of peak force mean force). The results of this study suggest that Lissajous displays may help counteract manual control decrements observed during microgravity. Future work should continue to explore constraints that can facilitate or interfere with bimanual control performance in altered-gravity environments.


2021 ◽  
Vol 15 ◽  
Author(s):  
Song Wan ◽  
Wen Qing Xia ◽  
Yu Lin Zhong

Background: Accumulating lines of evidence demonstrated that diabetic retinopathy (DR) patients trigger abnormalities in brain’s functional connectivity (FC), whereas the alterations of interhemispheric coordination pattern occurring in DR are not well understood. Our study was to investigate alterations of interhemispheric coordination in DR patients.Methods: Thirty-four DR individuals (19 males and 15 females: mean age: 52.97 ± 8.35 years) and 37 healthy controls (HCs) (16 males and 21 females; mean age: 53.78 ± 7.24 years) were enrolled in the study. The voxel-mirrored homotopic connectivity (VMHC) method was conducted to investigate the different interhemispheric FC between two groups. Then, the seed-based FC method was applied to assess the different FCs with region of interest (ROI) in the brain regions of decreased VMHC between two groups.Results: Compared with HC groups, DR groups showed decreased VMHC values in the bilateral middle temporal gyrus (MTG), lingual/calcarine/middle occipital gyrus (LING/CAL/MOG), superior temporal gyrus (STG), angular (ANG), postcentral gyrus (PosCG), inferior parietal lobule (IPL), and precentral gyrus (PreCG). Meanwhile, altered FC includes the regions of auditory network, visual network, default mode network, salience network, and sensorimotor network. Moreover, a significant positive correlation was observed between the visual acuity-oculus dexter (OD) and zVMHC values in the bilateral LING/CAL/MOG (r = 0.551, p = 0.001), STG (r = 0.426, p = 0.012), PosCG (r = 0.494, p = 0.003), and IPL (r = 0.459, p = 0.006) in DR patients.Conclusion: Our results highlighted that DR patients were associated with substantial impairment of interhemispheric coordination in auditory network, visual network, default mode network, and sensorimotor network. The VMHC might be a promising therapeutic target in the intervention of brain functional dysfunction in DR patients.


2021 ◽  
Vol 10 (23) ◽  
pp. 5539
Author(s):  
Xuanzhen Cen ◽  
Lidong Gao ◽  
Meimei Yang ◽  
Minjun Liang ◽  
István Bíró ◽  
...  

Objective: The efficacy of arch orthoses in posture adjustment and joint coordination improvement during steady-state gait is well documented; however, the biomechanical changes of gait sub-tasks caused by arch support (AS), especially during gait termination, are poorly understood. Hence, this study aimed to investigate how the acute arch-supporting intervention affects foot–ankle coordination and coordination variability (CV) in individuals with flatfoot during unplanned gait termination (UGT). Methods: Twenty-five male patients with flatfoot were selected as subjects participated in this AS manipulation study. A motion capture system was used for the collection of the metatarsophalangeal joint (MPJ) and ankle kinematics during UGT. MPJ-Ankle coordination and CV were quantified using an optimized vector coding technique during the three sub-phases of UGT. A paired-sample t-test from the one-dimensional statistical parametric mapping of one-dimensional was applied to examine the data significance. Results: Significant differences for the joint kinematics between non-arch-support (NAS) and AS were exhibited only in the MPJ transverse plane during the middle and later periods of UGT (p = 0.04–0.026). Frontal plane MPJ-ankle coordination under AS during stimulus delay significantly decreased from 177.16 ± 27.41° to 157.75 ± 32.54° compared with under NAS (p = 0.026); however, the coordination pattern had not changed. Moreover, no significant difference was found in the coupling angle variability between NAS and AS in three planes during sub-phases of UGT (all p > 0.5). Conclusions: The detailed intrinsic characteristic of AS induced acute changes in lower extremity segment coordination in patients with mild flatfoot has been recorded. This dataset on foot-ankle coordination characteristics during UGT is essential for explaining foot function and injury prediction concerning AS manipulation. Further studies are expected to reflect lower limb inter-joint coordination during gait termination through the long-term effects of AS orthoses.


2021 ◽  
Author(s):  
Vitaly Chaban

Abstract Hydrogen bonding is a phenomenon of paramount importance in room-temperature ionic liquids. The presence or absence of the hydrogen bond drastically alternates self-diffusion, shear viscosity, phase transition points, and other key properties of a pure substance. For certain applications, the presence of cation-anion hydrogen bonding is undesirable. In the present paper, we investigate perspectives of removing the hydrogen...fluorine interionic attraction in the imidazolium borates, the strongest non-covalent interaction in this type of system. Chemical modification of the tetrafluoroborate anion not only eliminates hydrogen bonding but also changes the most thermodynamically preferable orientation of the cation in the vicinity of the anion. Although the most acidic hydrogen atom of the imidazole ring remains the paramount electrophilic center of the cation, it does not engender a strong electrostatically driven coordination pattern with the properly modified anions. The reported new physical insights help compose more robust ionic liquids and tune solvation properties of the imidazolium-based RTILs.


2021 ◽  
Author(s):  
Zhong-Sheng Nong ◽  
Ling Zhu ◽  
Tian-Ci Wang ◽  
Lian-Feng Fan ◽  
Pu-Sheng Wang ◽  
...  

Abstract Asymmetric functionalization of alkenes represents one of the most attractive and straightforward methods to achieve precise assembly of molecular complexity from cost-effectiveness and sustainability viewpoints. Although the regio- and enantioselective transformations on the carbon-carbon double bond of alkenes have been extensively studied, those on the allylic C−H bonds of inactivated alkenes remain to be explored. Here, we report a Pd-catalyzed branch- and enantioselective allylic C−H alkylation, capable of accommodating almost all types of α-alkenes that range from feedstocks annually manufactured on million-ton scale to olefins tethering a wide scope of appended functionalities, providing unconventional access to chiral γ,δ-unsaturated amides. Notably, mechanistic studies reveal that the regioselectivity is not only governed by the coordination pattern of nucleophiles but also regulated by the ligational behaviors of ligands, highlighting the importance of the mono-ligation of chiral phosphoramidite ligands in provoking high levels of stereo- and branch-selectivity via a nucleophile-coordination enabled inner-sphere allylation pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jenifer Miehlbradt ◽  
Luigi F. Cuturi ◽  
Silvia Zanchi ◽  
Monica Gori ◽  
Silvestro Micera

AbstractThe acquisition of postural control is an elaborate process, which relies on the balanced integration of multisensory inputs. Current models suggest that young children rely on an ‘en-block’ control of their upper body before sequentially acquiring a segmental control around the age of 7, and that they resort to the former strategy under challenging conditions. While recent works suggest that a virtual sensory environment alters visuomotor integration in healthy adults, little is known about the effects on younger individuals. Here we show that this default coordination pattern is disrupted by an immersive virtual reality framework where a steering role is assigned to the trunk, which causes 6- to 8-year-olds to employ an ill-adapted segmental strategy. These results provide an alternate trajectory of motor development and emphasize the immaturity of postural control at these ages.


2021 ◽  
Author(s):  
Morteza Yaserifar ◽  
Ziya Fallah Mohammadi ◽  
Sayed Esmaeil Hosseininejad ◽  
Iman Esmaili ◽  
Paeen Afrakoti ◽  
...  

Background: Clinical researchers are trying to unravel the impact of different training interventions on the kinematics of human gait. However, the effects of long-term training experience on the kinematics of a healthy gait pattern remains unclear. Here we assess the effect of long-term training experience on joint angle variability during walking. Methods: Hip, knee, and ankle joint angles from fourteen soccer players and sixteen controls were acquired during treadmill and overground walking. Hip-knee coupling, knee-ankle coupling and coupling angle variability (CAV) of the right leg in the sagittal plane were assessed using a vector coding technique. Results: Soccer players showed reduced hip-knee CAV during the mid-stance and terminal-stance phases and reduced knee-ankle CAV during the pre-swing phase of gait compared to the control group. In addition, soccer players less often used an ankle coordination pattern, in which only the ankle joint but not the knee joint rotates. Interpretation: These findings show that soccer players had more stability in the ankle joint during the stance phase of the gait compared to the control group. Future studies can test whether these differences in the coordination of the ankle joint reflect the effects of long-term training on normal gait by comparing knee-ankle coupling and variability before and after exercise training interventions.


Author(s):  
Tsuneo Ishida

Glaucoma progressing stages (Stages 1~5) estimated from Visual Field Index (VFI); Mean Deviation (MD); and Pattern Standard Deviation (PSD) data has been elucidated; in which the glaucomatous pathology is in the proceeding stage 2-3 with T. Ishida's glaucoma patient compared with referring with VFI; MD; and PSD values to the literatures. Zinc(Ⅱ) induced VFI improvement should be taken into account when interpreting rates of VFI change over time that zinc promotes Retinal Ganglion Cells (RGCs) survival; in which zinc intake in RGCs survival may be zinc acetate 25-50 mg/day. Zinc(Ⅱ) induced recovery activity from optic nerve damage of the eye consists of four processes as follows. (1) Intraocular inflammatory stimulation process; Zinc concentrations 123-292 μg/g inhibit intraocular inflammation with atypical growth factor oncomodulin (Ocm) binding to its cognate receptor on RGCs. (2) RGC survival process; Zn2+ chelators enhance RGC survival and promote axon regeneration through the optic nerve. (3) Neural axon regeneration process; Zn2+ chelation promotes axon regeneration. Norepinephrine Transporters (Net) inhibitor promotes RGCs survival and axonal regeneration. (4) Eye to brain pathway process; Zn2+ chelator TPEN promotes both enduring RGC survival and considerable axon regeneration. Zinc induced recovery for NO production in RGCs that the NO conveys from the eye to the brain through the axons of RGCs; in which zinc concentration 100 μM may be suited for the optic nerve recovery. Accordingly; Zinc(Ⅱ) could enhance optic nerve damage recovery that Zn2+ may be bound with optic nerve damage proteins; in which Zn2+ ions may bind with intraocular protein; RGC survival protein; axonal protein; and optic nerve disorder proteins during recovery process by Zn2+ ions-centered tetrahedrally binding proteins molecular coordination pattern.


Sign in / Sign up

Export Citation Format

Share Document