coordination patterns
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 89)

H-INDEX

39
(FIVE YEARS 4)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
David Dahmen ◽  
Moritz Layer ◽  
Lukas Deutz ◽  
Paulina Anna Dąbrowska ◽  
Nicole Voges ◽  
...  

Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons spread across large cortical distances. Yet, this parallel activity is often confined to relatively low-dimensional manifolds. This implies strong coordination also among neurons that are most likely not even connected. Here, we combine in vivo recordings with network models and theory to characterize the nature of mesoscopic coordination patterns in macaque motor cortex and to expose their origin: We find that heterogeneity in local connectivity supports network states with complex long-range cooperation between neurons that arises from multi-synaptic, short-range connections. Our theory explains the experimentally observed spatial organization of covariances in resting state recordings as well as the behaviorally related modulation of covariance patterns during a reach-to-grasp task. The ubiquity of heterogeneity in local cortical circuits suggests that the brain uses the described mechanism to flexibly adapt neuronal coordination to momentary demands.


Author(s):  
Stavroula Sotiropoulou ◽  
Adamantios Gafos

Using articulatory data from five German speakers, we study how segmental sequences under different syllabic organizations respond to perturbations of phonetic parameters in the segments that compose them. Target words contained stop-lateral clusters /bl, gl, kl, pl/ in a word-initial and a cross-word context and were embedded in carrier phrases with different prosodic boundary strengths, i.e., no phrase boundary versus an utterance phrase boundary preceded the target word in the case of word-initial clusters or separated the consonants in the case of cross-word clusters. For word-initial cluster onsets, we find that increasing the lag between two consonants and C1 stop duration leads to earlier vowel initiation and reduced local timing stability across CV and CCV. Furthermore, as the inter-consonantal lag increases, C2 lateral duration decreases. In contrast, for cross-word clusters, increasing the lag between two consonants does not lead to earlier vowel initiation across CV and C#CV and robust local timing stability is maintained across CV and C#CV. Overall, the findings indicate that the effect of phonetic perturbations on the coordination patterns depends on the syllabic organization superimposed on these clusters.


2021 ◽  
Vol 12 ◽  
Author(s):  
Auriel Washburn ◽  
Matthew J. Wright ◽  
Chris Chafe ◽  
Takako Fujioka

Today’s audio, visual, and internet technologies allow people to interact despite physical distances, for casual conversation, group workouts, or musical performance. Musical ensemble performance is unique because interaction integrity critically depends on the timing between each performer’s actions and when their acoustic outcomes arrive. Acoustic transmission latency (ATL) between players is substantially longer for networked music performance (NMP) compared to traditional in-person spaces where musicians can easily adapt. Previous work has shown that longer ATLs slow the average tempo in ensemble performance, and that asymmetric co-actor roles and empathy-related traits affect coordination patterns in joint action. Thus, we are interested in how musicians collectively adapt to a given latency and how such adaptation patterns vary with their task-related and person-related asymmetries. Here, we examined how two pianists performed duets while hearing each other’s auditory outcomes with an ATL of 10, 20, or 40 ms. To test the hypotheses regarding task-related asymmetries, we designed duets such that pianists had: (1) a starting or joining role and (2) a similar or dissimilar musical part compared to their co-performer, with respect to pitch range and melodic contour. Results replicated previous clapping-duet findings showing that longer ATLs are associated with greater temporal asynchrony between partners and increased average tempo slowing. While co-performer asynchronies were not affected by performer role or part similarity, at the longer ATLs starting performers displayed slower tempos and smaller tempo variability than joining performers. This asymmetry of stability vs. flexibility between starters and joiners may sustain coordination, consistent with recent joint action findings. Our data also suggest that relative independence in musical parts may mitigate ATL-related challenges. Additionally, there may be a relationship between co-performer differences in empathy-related personality traits such as locus of control and coordination during performance under the influence of ATL. Incorporating the emergent coordinative dynamics between performers could help further innovation of music technologies and composition techniques for NMP.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mattia Rosso ◽  
Pieter J. Maes ◽  
Marc Leman

AbstractRhythmic joint coordination is ubiquitous in daily-life human activities. In order to coordinate their actions towards shared goals, individuals need to co-regulate their timing and move together at the collective level of behavior. Remarkably, basic forms of coordinated behavior tend to emerge spontaneously as long as two individuals are exposed to each other’s rhythmic movements. The present study investigated the dynamics of spontaneous dyadic entrainment, and more specifically how they depend on the sensory modalities mediating informational coupling. By means of a novel interactive paradigm, we showed that dyadic entrainment systematically takes place during a minimalistic rhythmic task despite explicit instructions to ignore the partner. Crucially, the interaction was organized by clear dynamics in a modality-dependent fashion. Our results showed highly consistent coordination patterns in visually-mediated entrainment, whereas we observed more chaotic and more variable profiles in the auditorily-mediated counterpart. The proposed experimental paradigm yields empirical evidence for the overwhelming tendency of dyads to behave as coupled rhythmic units. In the context of our experimental design, it showed that coordination dynamics differ according to availability and nature of perceptual information. Interventions aimed at rehabilitating, teaching or training sensorimotor functions can be ultimately informed and optimized by such fundamental knowledge.


Autism ◽  
2021 ◽  
pp. 136236132110443
Author(s):  
Hunter J Bennett ◽  
Taylor Jones ◽  
Kevin A Valenzuela ◽  
Justin A Haegele

Autistic persons exhibit variable movement, loading, and coordination patterns during walking. While much research has examined walking, little to no research exists regarding running for autistic persons despite its prevalence and benefits as a mode of physical activity. This study determined if autistic adolescents demonstrate increased coordination variability during running compared to matched controls. Seventeen autistic adolescents (aged = 13–18 years) and seventeen sex, age, and body mass index matched controls performed running at two matched speeds: self-selected of autistic adolescents and at 3.0 m/s. Modified vector coding was used to determine the patterns of movement for foot-shank, shank-thigh, left/right thigh, and contralateral arm-thigh coupling. Coordination variability, measuring cycle-to-cycle variability, was determined during loading response and pushoff phases. Mixed-model analyses of variance were used to determine group by speed interactions and main effects. Coordination variability was nearly 2× larger (all p < 0.001) in autistic adolescents compared to controls. Speed main effects were found for several sagittal plane couples during loading response. In agreement with walking analyses, this study illustrates that autistic adolescents run with increased intra-limb, inter-limb, and cross-body coordination variability. Like walking, increased coordination variability during running may negatively impact this mode of physical activity for autistic persons. Lay abstract Walking and running are popular forms of physical activity that involve the whole body (pelvis/legs and arms/torso) and are coordinated by the neuromuscular system, generally without much conscious effort. However, autistic persons tend not to engage in sufficient amounts of these activities to enjoy their health benefits. Recent reports indicate that autistic individuals tend to experience altered coordination patterns and increased variability during walking tasks when compared to non-autistic controls. Greater stride-to-stride coordination variability, when the task has not changed (i.e. walking at same speed and on same surface), is likely indicative of motor control issues and is more metabolically wasteful. To date, although, research examining running is unavailable in any form for this population. This study aimed to determine if coordination variability during running differs between autistic adolescents and age, sex, and body mass index matched non-autistic controls. This study found that increased variability exists throughout the many different areas of the body (foot-leg, left/right thighs, and opposite arm-opposite thigh) for autistic adolescents compared to controls. Along with previous research, these findings indicate autistic persons exhibit motor control issues across both forms of locomotion (walking and running) and at multiple speeds. These findings highlight issues with motor control that can be addressed by therapeutic/rehabilitative programming. Reducing coordination variability, inherently lessening metabolic inefficiency, may be an important step toward encouraging autistic youth to engage in sufficient physical activity (i.e. running) to enjoy physiological and psychological benefits.


Author(s):  
Margaret Byron ◽  
Arvind Santhanakrishnan ◽  
David Murphy

Synopsis As a strategy for creating fluid flow, metachronal motion is widespread across sizes and species, including a broad array of morphologies, length scales, and coordination patterns. Because of this great diversity, it has not generally been viewed holistically: The study of metachrony for swimming and pumping has historically been taxonomically siloed, in spite of many commonalities between seemingly disparate organisms. The goal of the present symposium was to bring together individuals from different backgrounds, all of whom have made substantial individual contributions to our understanding of the fluid dynamics of metachronal motion. Because these problems share a common physical–mathematical basis, intentionally connecting this community is likely to yield future collaborations and significant scientific discovery. Here, we briefly introduce the concept of metachronal motion, present the benefits of creating a research network based on the common aspects of metachrony across biological systems, and outline the contributions to the symposium.


2021 ◽  
pp. 1-10
Author(s):  
Masamichi Okudaira ◽  
Steffen Willwacher ◽  
Raki Kawama ◽  
Kazuki Ota ◽  
Satoru Tanigawa

2021 ◽  
Author(s):  
Hyun Joon Kim ◽  
Joon Ho Lee ◽  
Nyeonju Kang ◽  
James H. Cauraugh

Abstract The purpose of this study was to determine whether altered interlimb coordination patterns across trials improved bimanual force control capabilities within a trial. Fourteen healthy young participants completed bimanual force control tasks at 5%, 25%, and 50% of maximum voluntary contraction with and without visual feedback. To estimate synergetic coordination patterns between hands across multiple trials, we analyzed our primary outcome measure by performing an uncontrolled manifold analysis. In addition, we calculated force accuracy, variability, and regularity within a trial to quantify task stabilization. Using Pearson’s correlation analyses, we determined the relation between the changes in bilateral motor synergies (i.e., a proportion of good variability relative to bad variability) and bimanual force control performance from no-vision to vision conditions. The findings revealed that the presence of visual feedback significantly increased bilateral motor synergies with a reduction of bad variability components across multiple trials, and decreased force error, variability, and regularity within a trial. Further, we observed significant positive correlations between higher bilateral motor synergies and increased improvements in force control capabilities. These findings suggested that bimanual synergetic coordination behaviors at the planning level modulated by external sensory feedback may be related to advanced task stabilization patterns at the execution level.


2021 ◽  
Author(s):  
Parag Gad ◽  
Susan Hastings ◽  
Hui Zhong ◽  
Gaurav Seth ◽  
Sachin Kandhari ◽  
...  

AbstractSpinal neuromodulation and activity-based rehabilitation triggers neural network reorganization and enhances sensory-motor performances involving the lower limbs, the trunk, and the upper limbs. This study reports the acute effects of Transcutaneous Electrical Spinal Cord Neuromodulation (SCONE™, SpineX Inc.) on 12 individuals (ages 2 to 50) diagnosed with cerebral palsy (CP) with Gross Motor Function Classification Scale (GMFCS) levels ranging from I to V. Acute spinal neuromodulation improved the postural and locomotor abilities in 11 out of the 12 patients including the ability to generate bilateral weight bearing stepping in a 2-year-old (GMFCS level IV) who was unable to step. In addition, we observed independent head-control and weight bearing standing with stimulation in a 10-year-old and a 4-year old (GMFCS level V) who were unable to hold their head up or stand without support in the absence of stimulation. All patients significantly improved in coordination of flexor and extensor motor pools and inter and intralimb joint angles while stepping on a treadmill. While it is assumed that the etiologies of the disruptive functions of CP are associated with an injury to the supraspinal networks, these data are consistent with the hypothesis that spinal neuromodulation and functionally focused activity-based therapies can form a functionally improved chronic state of reorganization of the spinal-supraspinal connectivity. We further suggest that the level of reorganization of spinal-supraspinal connectivity with neuromodulation contributed to improved locomotion by improving the coordination patterns of flexor and extensor muscles by modulating the amplitude and firing patterns of EMG burst during stepping.


Sign in / Sign up

Export Citation Format

Share Document