2.13 Expression and Function of the NF-κB Subunits in Chronic Lymphocytic Leukemia: A Role for DNA-Dependent Protein Kinase in Regulating DNA Damage–Activated p65 and p50 Subunit Activation

2011 ◽  
Vol 11 ◽  
pp. S167-S168
Author(s):  
E.A. Mulligan ◽  
J.E. Hunter ◽  
A.E.G. Baird ◽  
S.L. Elliott ◽  
G.P. Summerfield ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 382-382
Author(s):  
Elaine Willmore ◽  
Sarah L. Elliott ◽  
Clark J. Crawford ◽  
Geoffrey Summerfield ◽  
Tryfonia Mainou-Fowler ◽  
...  

Abstract Poor prognosis B-cell chronic lymphocytic leukemia (CLL) is characterised by del(17p), del(11q) and unmutated IgVH genes. Mutational inactivation of p53 and ataxia telangiectasia-mutated kinase (ATM) are more frequent in these patients and confer drug-resistance. Over-expression of DNA-dependent protein kinase (DNA-PK), the enzyme that mediates DNA double strand break (DSB) repair via non homologous end joining (NHEJ), also correlates with chemo-resistance. Thus, alterations in DNA damage signalling pathways are associated with poor risk CLL. We have shown that DNA-PK is a new therapeutic target in CLL1, and are evaluating the efficacy of novel small molecule inhibitors of DNA-PK in ex vivo studies using leukemic lymphocytes from a well-characterised cohort of CLL patients (n=85). We hypothesised that targeting DNA-PK would inhibit NHEJ and thus sensitise CLL cells to drug-induced DNA damage. NU7441 and KU-0060648 are potent small molecule inhibitors of DNA-PK, developed in collaboration with KuDOS Pharmaceuticals (Cambridge, UK). Lymphocytes were treated with fludarabine, chlorambucil, and Topoisomerase II poisons (mitoxantrone, etoposide, doxorubicin) in the presence or absence of NU7441 (1 μM) or KU-0060648 (0.2 mM). There was a concentration-dependent decrease in viability in response to single agent treatment (XTT/apoptosis assays) that was potentiated in the presence of a DNA-PK inhibitor. For example, 14/18 cases tested with mitoxantrone (currently in clinical trials) were sensitised by NU7441. Measurement of γH2AX foci formation (a surrogate marker for DSB) after Mitoxantrone treatment showed foci formation within 3 hr (n=4), which was maximally potentiated at 24hr following co-incubation with NU7441, implicating DNA-PK as a mediator of DSB repair following drug treatment. Stratification by karyotypic status demonstrated striking results. Although del(17p) cases were more resistant to mitoxantrone (mean LC50 1.2 mM ± 0.2) compared to del(13q) cases (mean LC50 0.4 mM ± 0.03), they had the greatest sensitization (7–13 fold) to Mitoxantrone by NU7441 (p=0.0006), indicating the particular effectiveness of this combination in del(17p) cases. Consistent with this observation, DNA-PK expression (Western blot and activity assays) was highest in del(17p) cases, confirming the utility of this novel drug combination. Whereas Topoisomerase IIα expression was negligible (Western blotting), Topoisomerase IIβ expression varied 3-fold. RT PCR analyses are underway to further study expression of DNA-PK and Topoisomerase II in this cohort. Taken together, these data show that use of a DNA-PK inhibitor increases the therapeutic index of drugs currently used to treat CLL and identify a targeted and novel approach for poor prognosis disease.


2008 ◽  
Vol 14 (12) ◽  
pp. 3984-3992 ◽  
Author(s):  
Elaine Willmore ◽  
Sarah L. Elliott ◽  
Tryfonia Mainou-Fowler ◽  
Geoffrey P. Summerfield ◽  
Graham H. Jackson ◽  
...  

Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2213-2219 ◽  
Author(s):  
Catherine Muller ◽  
Garyfallia Christodoulopoulos ◽  
Bernard Salles ◽  
Lawrence Panasci

Abstract The objective of this study is to investigate the role of DNA-dependent protein kinase (DNA-PK) in the chronic lymphocytic leukemia (CLL) lymphocyte response to nitrogen mustard therapy. DNA-PK is a nuclear serine/threonine kinase that functions in DNA double-strand break repair and in the joining process in recombination mechanisms. In a series of 34 patients with B-CLL, either untreated (n = 16) or resistant to chlorambucil (n = 18), the kinase activity of the complex, as determined by its capacity to phosphorylate a peptide substrate in vitro, is increased in the resistant samples as compared with the untreated ones (24.4 ± 2.6 arbitrary units [a.u.] [range, 12.7 to 55.8 a.u.] versus 8.1 ± 2.8 a.u. [range, 0.9 to 44.5 a.u.], respectively (P < .0001]), independent of other clinical and biological factors. Linear regression analysis shows an excellent correlation between the level of DNA-PK activity and the inherent in vitro sensitivity of CLL lymphocytes to chlorambucil (r = .875, P =.0001). The regulation of DNA-PK activity was associated with increased DNA-binding activity of its regulatory subunit, the Ku heterodimer, in resistant samples. These results suggest that this activity is a determinant in the cellular response to chlorambucil and participates in the development of nitrogen mustard–resistant disease. The increase in DNA-PK activity might contribute to the enhanced cross-link repair that we previously postulated to be a primary mechanism of resistance to nitrogen mustards in CLL.


Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2213-2219 ◽  
Author(s):  
Catherine Muller ◽  
Garyfallia Christodoulopoulos ◽  
Bernard Salles ◽  
Lawrence Panasci

The objective of this study is to investigate the role of DNA-dependent protein kinase (DNA-PK) in the chronic lymphocytic leukemia (CLL) lymphocyte response to nitrogen mustard therapy. DNA-PK is a nuclear serine/threonine kinase that functions in DNA double-strand break repair and in the joining process in recombination mechanisms. In a series of 34 patients with B-CLL, either untreated (n = 16) or resistant to chlorambucil (n = 18), the kinase activity of the complex, as determined by its capacity to phosphorylate a peptide substrate in vitro, is increased in the resistant samples as compared with the untreated ones (24.4 ± 2.6 arbitrary units [a.u.] [range, 12.7 to 55.8 a.u.] versus 8.1 ± 2.8 a.u. [range, 0.9 to 44.5 a.u.], respectively (P < .0001]), independent of other clinical and biological factors. Linear regression analysis shows an excellent correlation between the level of DNA-PK activity and the inherent in vitro sensitivity of CLL lymphocytes to chlorambucil (r = .875, P =.0001). The regulation of DNA-PK activity was associated with increased DNA-binding activity of its regulatory subunit, the Ku heterodimer, in resistant samples. These results suggest that this activity is a determinant in the cellular response to chlorambucil and participates in the development of nitrogen mustard–resistant disease. The increase in DNA-PK activity might contribute to the enhanced cross-link repair that we previously postulated to be a primary mechanism of resistance to nitrogen mustards in CLL.


1998 ◽  
Vol 9 (9) ◽  
pp. 2361-2374 ◽  
Author(s):  
Dennis P. Gately ◽  
James C. Hittle ◽  
Gordon K. T. Chan ◽  
Tim J. Yen

Ataxia telangiectasia–mutated gene (ATM) is a 350-kDa protein whose function is defective in the autosomal recessive disorder ataxia telangiectasia (AT). Affinity-purified polyclonal antibodies were used to characterize ATM. Steady-state levels of ATM protein varied from undetectable in most AT cell lines to highly expressed in HeLa, U2OS, and normal human fibroblasts. Subcellular fractionation showed that ATM is predominantly a nuclear protein associated with the chromatin and nuclear matrix. ATM protein levels remained constant throughout the cell cycle and did not change in response to serum stimulation. Ionizing radiation had no significant effect on either the expression or distribution of ATM. ATM immunoprecipitates from HeLa cells and the human DNA-dependent protein kinase null cell line MO59J, but not from AT cells, phosphorylated the 34-kDa subunit of replication protein A (RPA) complex in a single-stranded and linear double-stranded DNA–dependent manner. Phosphorylation of p34 RPA occurred on threonine and serine residues. Phosphopeptide analysis demonstrates that the ATM-associated protein kinase phosphorylates p34 RPA on similar residues observed in vivo. The DNA-dependent protein kinase activity observed for ATM immunocomplexes, along with the association of ATM with chromatin, suggests that DNA damage can induce ATM or a stably associated protein kinase to phosphorylate proteins in the DNA damage response pathway.


2015 ◽  
Vol 35 (15) ◽  
pp. 2699-2713 ◽  
Author(s):  
Pauline Douglas ◽  
Ruiqiong Ye ◽  
Nicholas Morrice ◽  
Sébastien Britton ◽  
Laura Trinkle-Mulcahy ◽  
...  

Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis.


Nature ◽  
10.1038/21913 ◽  
1999 ◽  
Vol 400 (6739) ◽  
pp. 81-83 ◽  
Author(s):  
Gretchen S. Jimenez ◽  
Fredrik Bryntesson ◽  
Maria I. Torres-Arzayus ◽  
Anne Priestley ◽  
Michelle Beeche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document