A computational framework for fluid–rigid body interaction: Finite element formulation and applications

2006 ◽  
Vol 195 (13-16) ◽  
pp. 1633-1666 ◽  
Author(s):  
W. Dettmer ◽  
D. Perić
Author(s):  
K. S. Surana ◽  
H. Ngyun

Abstract This paper presents a new theoretical and computational framework for computing solutions of right classes for laminated composites using 2D p-version least squares finite element formulation incorporating the correct physics of interlamina behavior. At the interface between two laminas of dissimilar materials we have continuity of displacements u, v, stresses σyy, τxy, and strain εxx, while the stress σxx and the strains εyy and γxy are discontinuous. Thus, a finite element formulation, incorporating the physics of laminate behavior, would require interpolation of u, v, εxx, σyy and τxy instead of u, v, σxx, σyy and τxy which is generally the case in most mixed formulations. In the p-version LSFEF presented here, we interpolate u, v and σyy, τxy (εxx = ∂u/∂x is used to eliminate εxx as a variable) using appropriate p-version interpolations which would ensure correct interlamina behavior of these components. When the mating lamina properties are different, interlamina discontinuity of σxx, εyy and γxy is automatically generated due to dissimilar material properties of the laminas. In this formulation interlamina jumps in σxx, εyy and γxy do not constitute singularities, hence mesh refinements and higher p-levels are not needed in the vicinity of inter-lamina boundaries. The major thrust of this paper is to construct interpolations for the dependant variables that are of right classes in appropriate spaces so that a sequence of converged solutions in these spaces may be computed which, when converged, would yield a numerical solution that has exactly the same characteristics (in terms of continuity and differentiability) as the analytical or theoretical (strong) solution.


1990 ◽  
Vol 57 (3) ◽  
pp. 707-718 ◽  
Author(s):  
Bilin Chang ◽  
A. A. Shabana

In this investigation a nonlinear total Lagrangian finite element formulation is developed for the dynamic analysis of plates that undergo large rigid body displacements. In this formulation shape functions are required to include rigid body modes that describe only large translational displacements. This does not represent any limitation on the technique presented in this study, since most of commonly used shape functions satisfy this requirement. For each finite plate element an intermediate element coordinate system, whose axes are initially parallel to the axes of the element coordinate system, is introduced. This intermediate element coordinate system, which has an origin which is rigidly attached to the origin of the deformable body, is used for the convenience of describing the configuration of the element with respect to the deformable body coordinate system in the undeformed state. The nonlinear dynamic equations developed in this investigation for the large rigid body displacement and small elastic deformation analysis of the rectangular plates are expressed in terms of a unique set of time invariant element matrices that depend on the assumed displacement field. The invariants of motion of the deformable body discretized using the plate elements are obtained by assembling the invariants of its elements using a standard finite element procedure.


Author(s):  
C. Venkatakrishnan ◽  
B. Fallahi ◽  
H. Y. Lai

Abstract The need for higher operating speeds has led to the study of flexibility in mechanisms. In most of the previous works, rotary inertia, normal, tangential and coriolis terms are neglected. These assumptions are valid at lower speeds and for slender links. In this paper, a procedure to include all inertia terms in a local moving coordinate system is introduced. It is shown that the inertia terms lead to the introduction of three element matrices in the finite element formulation. The proposed approach is used to model the rotating beam problem. The results of a numerical solution is reported and validated.


Sign in / Sign up

Export Citation Format

Share Document