On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphene-nanoplatelets

2020 ◽  
Vol 359 ◽  
pp. 112767 ◽  
Author(s):  
Behrouz Karami ◽  
Davood Shahsavari
Author(s):  
Vahid Movahedfar ◽  
Mohammad M Kheirikhah ◽  
Younes Mohammadi ◽  
Farzad Ebrahimi

Based on modified strain gradient theory, nonlinear vibration analysis of a functionally graded piezoelectric doubly curved microshell in thermal environment has been performed in this research. Three scale parameters have been included in the modeling of thin doubly curved microshell in order to capture micro-size effects. Graded material properties between the top and bottom surfaces of functionally graded piezoelectric doubly curved microshell have been considered via incorporating power-law model. It is also assumed that the microshell is exposed to a temperature field of uniform type and the material properties are temperature-dependent. By analytically solving the governing equations based on the harmonic balance method, the closed form of nonlinear vibration frequency has been achieved. Obtained results indicate the relevance of calculated frequencies to three scale parameters, material gradation, electrical voltage, curvature radius, and temperature changes.


2017 ◽  
Vol 21 (4) ◽  
pp. 1316-1356 ◽  
Author(s):  
Dang T Dong ◽  
Dao Van Dung

This study presents a nonlinear vibration analysis of function graded sandwich doubly curved shallow shells, which reinforced by functionally graded material stiffeners and rested on the Pasternak foundation. The shells are subjected to the combination of mechanical, thermal, and damping loading. Four models of the sandwich shells with general sigmoid and power laws distribution are considered. The governing equations are established based on the third-order shear deformation theory. Von Kármán-type nonlinearity and smeared stiffener technique are taken into account. The explicit expressions for determining natural frequencies, nonlinear frequency–amplitude relation, and time–deflection curves are obtained by employing the Galerkin method. Finally, the fourth-order Runge–Kutta method is applied to investigate the influences of functionally graded material stiffeners, the boundary conditions, the models of the shells, thermal environment, foundation and geometrical parameters on the natural frequencies and dynamic nonlinear responses of the sandwich shells.


2019 ◽  
Vol 3 (4) ◽  
pp. 104 ◽  
Author(s):  
Vu Van Tham ◽  
Tran Huu Quoc ◽  
Tran Minh Tu

In this paper, a new four-variable refined shell theory is developed for free vibration analysis of multi-layered functionally graded carbon nanotube-reinforced composite (FG-CNTRC) doubly curved shallow shell panels. The theory has only four unknowns and satisfies zero stress conditions at the free surfaces without correction factor. Five different types of carbon nanotube (CNTs) distribution through the thickness of each FG-CNT layer are considered. Governing equations of simply supported doubly curved FG-CNTRC panels are derived from Hamilton’s principle. The resultant eigenvalue system is solved to obtain the frequencies and mode shapes of the anti-symmetric cross-ply laminated panels by using the Navier solution. The numerical results in the comparison examples have proved the accuracy and efficiency of the developed model. Detailed parametric studies have been carried out to reveal the influences of CNTs volume fraction, CNTs distribution, CNTs orientation, dimension ratios and curvature on the free vibration responses of the doubly curved laminated FG-CNTRC panels.


Sign in / Sign up

Export Citation Format

Share Document