scholarly journals An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications

2020 ◽  
Vol 362 ◽  
pp. 112790 ◽  
Author(s):  
E. Samaniego ◽  
C. Anitescu ◽  
S. Goswami ◽  
V.M. Nguyen-Thanh ◽  
H. Guo ◽  
...  
2021 ◽  
Author(s):  
Ruslan Chernyshev ◽  
Mikhail Krinitskiy ◽  
Viktor Stepanenko

<p>This work is devoted to development of neural networks for identification of partial differential equations (PDE) solved in the land surface scheme of INM RAS Earth System model (ESM). Atmospheric and climate models are in the top of the most demanding for supercomputing resources among research applications. Spatial resolution and a multitude of physical parameterizations used in ESMs continuously increase. Most of parameters are still poorly constrained, many of them cannot be measured directly. To optimize model calibration time, using neural networks looks a promising approach. Neural networks are already in wide use in satellite imaginary (Su Jeong Lee, et al, 2015; Krinitskiy M. et al, 2018) and for calibrating parameters of land surface models (Yohei Sawada el al, 2019). Neural networks have demonstrated high efficiency in solving conventional problems of mathematical physics (Lucie P. Aarts el al, 2001; Raissi M. et al, 2020). </p><p>We develop a neural networks for optimizing parameters of nonlinear soil heat and moisture transport equation set. For developing we used Python3 based programming tools implemented on GPUs and Ascend platform, provided by Huawei. Because of using hybrid approach combining neural network and classical thermodynamic equations, the major purpose was finding the way to correctly calculate backpropagation gradient of error function, because model trains and is being validated on the same temperature data, while model output is heat equation parameter, which is typically not known. Neural network model has been runtime trained using reference thermodynamic model calculation with prescribed parameters, every next thermodynamic model step has been used for fitting the neural network until it reaches the loss function tolerance.</p><p>Literature:</p><p>1.     Aarts, L.P., van der Veer, P. “Neural Network Method for Solving Partial Differential Equations”. Neural Processing Letters 14, 261–271 (2001). https://doi.org/10.1023/A:1012784129883</p><p>2.     Raissi, M., P. Perdikaris and G. Karniadakis. “Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.” ArXiv abs/1711.10561 (2017): n. pag.</p><p>3.     Lee, S.J., Ahn, MH. & Lee, Y. Application of an artificial neural network for a direct estimation of atmospheric instability from a next-generation imager. Adv. Atmos. Sci. 33, 221–232 (2016). https://doi.org/10.1007/s00376-015-5084-9</p><p>4.     Krinitskiy M, Verezemskaya P, Grashchenkov K, Tilinina N, Gulev S, Lazzara M. Deep Convolutional Neural Networks Capabilities for Binary Classification of Polar Mesocyclones in Satellite Mosaics. Atmosphere. 2018; 9(11):426.</p><p>5.     Sawada, Y.. “Machine learning accelerates parameter optimization and uncertainty assessment of a land surface model.” ArXiv abs/1909.04196 (2019): n. pag.</p><p>6.     Shufen Pan et al. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci., 24, 1485–1509 (2020)</p><p>7.     Chaney, Nathaniel & Herman, Jonathan & Ek, M. & Wood, Eric. (2016). Deriving Global Parameter Estimates for the Noah Land Surface Model using FLUXNET and Machine Learning: Improving Noah LSM Parameters. Journal of Geophysical Research: Atmospheres. 121. 10.1002/2016JD024821.</p><p> </p><p> </p>


Author(s):  
Danang Adi Pratama ◽  
Maharani Abu Bakar ◽  
Mustafa Man ◽  
M. Mashuri

Conventionally, partial differential equations (PDE) problems are solved numerically through discretization process by using finite difference approximations. The algebraic systems generated by this process are then finalized by using an iterative method. Recently, scientists invented a short cut approach, without discretization process, to solve the PDE problems, namely by using machine learning (ML). This is potential to make scientific machine learning as a new sub-field of research. Thus, given the interest in developing ML for solving PDEs, it makes an abundance of an easy-to-use methods that allows researchers to quickly set up and solve problems. In this review paper, we discussed at least three methods for solving high dimensional of PDEs, namely PyDEns, NeuroDiffEq, and Nangs, which are all based on artificial neural networks (ANNs). ANN is one of the methods under ML which proven to be a universal estimator function. Comparison of numerical results presented in solving the classical PDEs such as heat, wave, and Poisson equations, to look at the accuracy and efficiency of the methods. The results showed that the NeuroDiffEq and Nangs algorithms performed better to solve higher dimensional of PDEs than the PyDEns.


Sign in / Sign up

Export Citation Format

Share Document