Assessment of the wall-adapting local eddy-viscosity model in transitional boundary layer

2020 ◽  
Vol 371 ◽  
pp. 113287 ◽  
Author(s):  
Minwoo Kim ◽  
Jiseop Lim ◽  
Seungtae Kim ◽  
Solkeun Jee ◽  
Donghun Park
Author(s):  
Michele Marconcini ◽  
Roberto Pacciani ◽  
Andrea Arnone

A URANS solver has been applied to study the effects of a synthetic jet actuator on the laminar boundary layer separation over a flat plate with adverse pressure gradient. The pressure distribution over the flat plate is representative of the suction side of a ultra-high-lift, LP-turbine airfoil. Measurements for several Reynolds numbers, are provided via experimental tests carried out in the framework of the European project TATMo (Turbulence and Transition Modelling for Special Turbomachinery Applications). The actuator device, in the form of a two-dimensional slot, has been conceived in order to obtain jet aerodynamic characteristics suitable for separation control. The study has been carried out using a novel, transition-sensitive, non-linear eddy-viscosity model. It is based on the coupling of an additional transport equation for the so-called laminar kinetic energy (LKE) to a realizable, quadratic eddy-viscosity model that provides an explicit algebraic formulation for the Reynolds stresses. The analysis covers steady as well as unsteady cases characterized by different actuator frequencies. Comparisons between measurements and computations are presented. The suitability of the proposed approach to simulate the time- and phase-averaged effects of a synthetic jet for boundary layer control at typical operating conditions of high-lift LP-turbine blades will be discussed in detail.


2014 ◽  
Vol 26 (4) ◽  
pp. 041702 ◽  
Author(s):  
M. Germano ◽  
A. Abbà ◽  
R. Arina ◽  
L. Bonaventura

1973 ◽  
Vol 95 (3) ◽  
pp. 415-421 ◽  
Author(s):  
A. J. Wheeler ◽  
J. P. Johnston

Predictions have been made for a variety of experimental three-dimensional boundary layer flows with a single finite difference method which was used with three different turbulent stress models: (i) an eddy viscosity model, (ii) the “Nash” model, and (iii) the “Bradshaw” model. For many purposes, even the simplest stress model (eddy viscosity) was adequate to predict the mean velocity field. On the other hand, the profile of shear stress direction was not correctly predicted in one case by any model tested. The high sensitivity of the predicted results to free stream pressure gradient in separating flow cases is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document