scholarly journals A computationally efficient physiologically comprehensive 3D–0D closed-loop model of the heart and circulation

2021 ◽  
Vol 386 ◽  
pp. 114092
Author(s):  
Christoph M. Augustin ◽  
Matthias A.F. Gsell ◽  
Elias Karabelas ◽  
Erik Willemen ◽  
Frits W. Prinzen ◽  
...  
Author(s):  
Changchun Liu ◽  
Chankyu Lee ◽  
Andreas Hansen ◽  
J. Karl Hedrick ◽  
Jieyun Ding

Model predictive control (MPC) is a popular technique for the development of active safety systems. However, its high computational cost prevents it from being implemented on lower-cost hardware. This paper presents a computationally efficient predictive controller for lane keeping assistance systems. The controller shares control with the driver, and applies a correction steering when there is a potential lane departure. Using the explicit feedback MPC, a multi-parametric nonlinear programming problem with a human-in-the-loop model and safety constraints is formulated. The cost function is chosen as the difference between the linear state feedback function to be determined and the resultant optimal control sequence of the MPC problem solved off-line given the current state. The piecewise linear feedback function is obtained by solving the parametric programming with an approximation approach. The effectiveness of the controller is evaluated through numerical simulations.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840098
Author(s):  
Yuan Li ◽  
Huifang Shen ◽  
Chao Xiong ◽  
Yaofei Han ◽  
Guofeng He

In order to eliminate the effect on the grid current caused by the background harmonic voltage and the reference signal on the grid connected multi-inverter, this paper adopts the double closed-loop feed-forward control strategy. This strategy is based on the inductor voltage and the grid-connected current, and the integrated control strategy of quasi-proportional resonance loop parallel to a specific harmonic compensation loop. Based on the closed-loop model of multiple inverters, the change curves of the transfer function of the two control strategies are compared with the feed-forward control and the composite proportional resonance. The two corresponding control methods are used to analyze the current quality of the multi-inverter impact. Finally, the MATLAB/Simulink simulation model is set up to verify the proposed control strategies. The simulation results show that the proposed method can achieve better tracking of the sinusoidal command signal at the fundamental frequency, and enhance the anti-interference ability of the system at the 3rd, 5th, and 7th harmonic frequency.


Author(s):  
Zineb Lahlou ◽  
Abderrahim EL-Amrani ◽  
Ismail Boumhidi

The work deals finite frequency H<sub>∞</sub> control design for continuous time nonlinear systems, we provide sufficient conditions, ensuring that the closed-loop model is stable. Simulations will be gifted to show level of attenuation that a H<sub>∞</sub> lower can be by our method obtained developed where further comparison.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1623
Author(s):  
Federico Lozano Santamaria ◽  
Sandro Macchietto

Heat exchanger networks subject to fouling are an important example of dynamic systems where performance deteriorates over time. To mitigate fouling and recover performance, cleanings of the exchangers are scheduled and control actions applied. Because of inaccuracy in the models, as well as uncertainty and variability in the operations, both schedule and controls often have to be revised to improve operations or just to ensure feasibility. A closed-loop nonlinear model predictive control (NMPC) approach had been previously developed to simultaneously optimize the cleaning schedule and the flow distribution for refinery preheat trains under fouling, considering their variability. However, the closed-loop scheduling stability of the scheme has not been analyzed. For practical closed-loop (online) scheduling applications, a balance is usually desired between reactivity (ensuring a rapid response to changes in conditions) and stability (avoiding too many large or frequent schedule changes). In this paper, metrics to quantify closed-loop scheduling stability (e.g., changes in task allocation or starting time) are developed and then included in the online optimization procedure. Three alternative formulations to directly include stability considerations in the closed-loop optimization are proposed and applied to two case studies, an illustrative one and an industrial one based on a refinery preheat train. Results demonstrate the applicability of the stability metrics developed and the ability of the closed-loop optimization to exploit trade-offs between stability and performance. For the heat exchanger networks under fouling considered, it is shown that the approach proposed can improve closed-loop schedule stability without significantly compromising the operating cost. The approach presented offers the blueprint for a more general application to closed-loop, model-based optimization of scheduling and control in other processes.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Zhenxin Feng ◽  
Yi Jiang ◽  
Yuting Luo ◽  
Kun Zhao ◽  
Guocheng Ding ◽  
...  

This paper introduces a networked closed-loop model for smart on-site maintenance of substation equipment using mobile networks, which is composed of a field-side Smart Operation and Maintenance (SOM) box with its related APP and a centre-side system platform for Operation and Maintenance (OM). As a bridge to connect the operation sites and data centre, the networked equipment maintenance model enables bidirectional communication among the management, maintenance teams, and diversely located equipment. This model not only realizes the formal data uploading in real-time, but also can provide the workers on site with guidance from the data centre.


Sign in / Sign up

Export Citation Format

Share Document