scholarly journals High-order implicit time integration scheme based on Padé expansions

2022 ◽  
Vol 390 ◽  
pp. 114436
Author(s):  
Chongmin Song ◽  
Sascha Eisenträger ◽  
Xiaoran Zhang
1990 ◽  
Vol 112 (2) ◽  
pp. 106-114
Author(s):  
N. M. Patrikalakis ◽  
D. Y. Yoon

An efficient solution scheme to simulate the nonlinear motions of hanging risers based on an adaptive nonuniform grid finite difference method and an implicit time integration scheme is presented. Dynamic buckling-type response of hanging risers under rigid hang-off due to heave acceleration of the support platform in extreme excitation conditions is studied, and the important parameters affecting the response are identified. Significant reduction of motions and resulting stresses is obtained by employing compliant hang-off.


2000 ◽  
Vol 18 (3) ◽  
pp. 337-346 ◽  
Author(s):  
G. D. Carver ◽  
P. A. Stott

Abstract. The implicit time integration scheme of Stott and Harwood (1993) was proposed as an efficient scheme for use in three-dimensional chemical models of the atmosphere. The scheme was designed for chemistry schemes using `chemical families', in which species with short lifetimes are grouped into longer-lived families. Further study with more complex chemistry, more species and reactions showed the scheme to be non-convergent and unstable under certain conditions; particularly for the perturbed chemical scenarios of polar stratospheric winters. In this work the scheme has been improved by revising the treatment of families and the convergence properties of the scheme. The new scheme has been named IMPACT (IMPlicit Algorithm for Chemical Time-stepping). It remains easy to implement and produces simulations that compare well with integrations using more accurate higher order schemes.Key words: Atmospheric composition and structure (middle atmosphere - composition and chemistry; lioposphere - composition and chemistry; instruments and techniques)


Sign in / Sign up

Export Citation Format

Share Document