scholarly journals Blocking IL-6 trans-Signaling Prevents High-Fat Diet-Induced Adipose Tissue Macrophage Recruitment but Does Not Improve Insulin Resistance

2016 ◽  
Vol 23 (3) ◽  
pp. 563 ◽  
Author(s):  
Michael J. Kraakman ◽  
Helene L. Kammoun ◽  
Tamara L. Allen ◽  
Virginie Deswaerte ◽  
Darren C. Henstridge ◽  
...  
2015 ◽  
Vol 21 (3) ◽  
pp. 403-416 ◽  
Author(s):  
Michael J. Kraakman ◽  
Helene L. Kammoun ◽  
Tamara L. Allen ◽  
Virginie Deswaerte ◽  
Darren C. Henstridge ◽  
...  

2016 ◽  
Vol 22 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Patricia Pérez-Matute ◽  
José G Pichel ◽  
María Iñiguez ◽  
Emma Recio-Fernández ◽  
Laura Pérez-Martínez ◽  
...  

Endocrinology ◽  
2011 ◽  
Vol 152 (5) ◽  
pp. 1789-1799 ◽  
Author(s):  
Shiho Fujisaka ◽  
Isao Usui ◽  
Yukiko Kanatani ◽  
Masashi Ikutani ◽  
Ichiro Takasaki ◽  
...  

Diet-induced obesity is reported to induce a phenotypic switch in adipose tissue macrophages from an antiinflammatory M2 state to a proinflammatory M1 state. Telmisartan, an angiotensin II type 1 receptor blocker and a peroxisome proliferator-activated receptor-γ agonist, reportedly has more beneficial effects on insulin sensitivity than other angiotensin II type 1 receptor blockers. In this study, we studied the effects of telmisartan on the adipose tissue macrophage phenotype in high-fat-fed mice. Telmisartan was administered for 5 wk to high-fat-fed C57BL/6 mice. Insulin sensitivity, macrophage infiltration, and the gene expressions of M1 and M2 markers in visceral adipose tissues were then examined. An insulin- or a glucose-tolerance test showed that telmisartan treatment improved insulin resistance, decreasing the body weight gain, visceral fat weight, and adipocyte size without affecting the amount of energy intake. Telmisartan reduced the mRNA expression of CD11c and TNF-α, M1 macrophage markers, and significantly increased the expressions of M2 markers, such as CD163, CD209, and macrophage galactose N-acetyl-galactosamine specific lectin (Mgl2), in a quantitative RT-PCR analysis. A flow cytometry analysis showed that telmisartan decreased the number of M1 macrophages in visceral adipose tissues. In conclusion, telmisartan improves insulin sensitivity and modulates adipose tissue macrophage polarization to an antiinflammatory M2 state in high-fat-fed mice.


2019 ◽  
Vol 40 (12) ◽  
pp. 1532-1543
Author(s):  
Ming-ming Ma ◽  
Chen-chen Jin ◽  
Xue-lian Huang ◽  
Lu Sun ◽  
Hui Zhou ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2109-2117 ◽  
Author(s):  
Elodie Riant ◽  
Aurélie Waget ◽  
Haude Cogo ◽  
Jean-François Arnal ◽  
Rémy Burcelin ◽  
...  

Although corroborating data indicate that estrogens influence glucose metabolism through the activation of the estrogen receptor α (ERα), it has not been established whether this pathway could represent an effective therapeutic target to fight against metabolic disturbances induced by a high-fat diet (HFD). To this end, we first evaluated the influence of chronic 17β-estradiol (E2) administration in wild-type ovariectomized mice submitted to either a normal chow diet or a HFD. Whereas only a modest effect was observed in normal chow diet-fed mice, E2 administration exerted a protective effect against HFD-induced glucose intolerance, and this beneficial action was abolished in ERα-deficient mice. Furthermore, E2 treatment reduced HFD-induced insulin resistance by 50% during hyperinsulinemic euglycemic clamp studies and improved insulin signaling (Akt phosphorylation) in insulin-stimulated skeletal muscles. Unexpectedly, we found that E2 treatment enhanced cytokine (IL-6, TNF-α) and plasminogen activator inhibitor-1 mRNA expression induced by HFD in the liver and visceral adipose tissue. Interestingly, although the proinflammatory effect of E2 was abolished in visceral adipose tissue from chimeric mice grafted with bone marrow cells from ERα-deficient mice, the beneficial effect of the hormone on glucose tolerance was not altered, suggesting that the metabolic and inflammatory effects of estrogens can be dissociated. Eventually comparison of sham-operated with ovariectomized HFD-fed mice demonstrated that endogenous estrogens levels are sufficient to exert a full protective effect against insulin resistance and glucose intolerance. In conclusion, the regulation of the ERα pathway could represent an effective strategy to reduce the impact of high-fat diet-induced type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document