normal chow diet
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Ying Wang ◽  
Gurpreet Kaur ◽  
Manish Kumar ◽  
Ajay Singh Kushwah ◽  
Atul Kabra ◽  
...  

Diet and lifestyle play a crucial role in the progress of some cardiovascular disorders (CVDs). Rising interest in natural products and their pharmacological investigations witnessed therapeutic potential against CVDs. Caffeic acid (CA) is an organic composite hydroxycinnamic acid derivative classified among phenolics. It is a secondary metabolite biosynthesized in all plant species in the form of ester conjugates. The reported pharmacological activities of CA are neuroprotective, cardioprotective, hypoglycemic, antioxidant, and immunomodulatory properties. This work is aimed to examine the outcome of CA in atherogenic diet- (Ath-) induced rat model on lipid profile changes and endothelium function. The method involves a study duration of 35 days utilizing (n = 6) male Wistar rats (180–200 g) that were fed either normal chow or Ath. Study groups are given (i) normal chow diet, (ii) Ath, (iii) Ath + CA (25 or 50 mg/kg, p.o.), (iv) normal chow diet + CA (50 mg/kg, p.o.), and (v) Ath + Atorvastatin (ATORVA) (5 mg/kg, p.o.). Blood samples were collected at the end of the study to measure serum lipid profile, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and tissue oxidative stress level. Hemodynamic parameters and aorta staining were performed. CA treatment ameliorated lipid profile and significantly reduced the oxidative stress level. Aorta staining examination revealed a marked reduction of the atherosclerotic lesions. These findings suggested that CA is an effective treatment approach for preventing atherosclerotic lesion progression attributed to protection against oxidative stress and various enzymatic activities in the Ath model.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Karla G. Schwarz ◽  
Katherin V. Pereyra ◽  
Camilo Toledo ◽  
David C. Andrade ◽  
Hugo S. Díaz ◽  
...  

Abstract Background Chronic heart failure (CHF) is a global health problem. Increased sympathetic outflow, cardiac arrhythmogenesis and irregular breathing patterns have all been associated with poor outcomes in CHF. Several studies showed that activation of the renin-angiotensin system (RAS) play a key role in CHF pathophysiology. Interestingly, potassium (K+) supplemented diets showed promising results in normalizing RAS axis and autonomic dysfunction in vascular diseases, lowering cardiovascular risk. Whether subtle increases in dietary K+ consumption may exert similar effects in CHF has not been previously tested. Accordingly, we aimed to evaluate the effects of dietary K+ supplementation on cardiorespiratory alterations in rats with CHF. Methods Adult male Sprague–Dawley rats underwent volume overload to induce non-ischemic CHF. Animals were randomly allocated to normal chow diet (CHF group) or supplemented K+ diet (CHF+K+ group) for 6 weeks. Cardiac arrhythmogenesis, sympathetic outflow, baroreflex sensitivity, breathing disorders, chemoreflex function, respiratory–cardiovascular coupling and cardiac function were evaluated. Results Compared to normal chow diet, K+ supplemented diet in CHF significantly reduced arrhythmia incidence (67.8 ± 15.1 vs. 31.0 ± 3.7 events/hour, CHF vs. CHF+K+), decreased cardiac sympathetic tone (ΔHR to propranolol: − 97.4 ± 9.4 vs. − 60.8 ± 8.3 bpm, CHF vs. CHF+K+), restored baroreflex function and attenuated irregular breathing patterns. Additionally, supplementation of the diet with K+ restores normal central respiratory chemoreflex drive and abrogates pathological cardio-respiratory coupling in CHF rats being the outcome an improved cardiac function. Conclusion Our findings support that dietary K+ supplementation in non-ischemic CHF alleviate cardiorespiratory dysfunction.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 29-29
Author(s):  
Yoo Kim ◽  
Caio Henrique Mazucanti ◽  
Jennifer F. O'Connell ◽  
Josephine M. Egan

Abstract Objectives Aging is a condition in which we gradually lose the ability to maintain homeostasis due to dysfunction. There continues to be a knowledge gap in implicating how dietary intervention affects the mechanisms delaying or preventing aging-related chronic diseases. Although curcumin (CUR), a natural antioxidant, shows the putative therapeutic properties such as reinstating insulin homeostasis in obese mice, an aging-associated mechanism in which CUR regulates insulin levels largely remains unclear. Thus, the objective of this study is to determine effects of CUR on anti-aging under obese condition mediated by maintaining insulin homeostasis via cross-talk among liver, pancreas and brain. Methods We examine how dietary CUR improves insulin clearance and maintains a proper range of circulating insulin level in the aged diet-induced obesity (DIO) mouse model. Old male C57BL/6J mice were fed a normal chow diet (NCD) or a NCD containing 0.4% (w/w) curcumin (NCD + CUR), a high fat/high sugar diet (HFHSD) or a HFHSD + CUR (N = 7–9 per group) for 16 weeks. Results Old male C57BL/6J mice were fed a normal chow diet (NCD) or a NCD containing 0.4% (w/w) curcumin (NCD + CUR), a high fat/high sugar diet (HFHSD) or a HFHSD + CUR (N = 7–9 per group) for 16 weeks. Mice given HFHSD + CUR had reduced body weight gain (4.7 ± 1.8 vs 7.8 ± 1.6g) and had lower blood insulin levels (2.24 ± 0.3 vs. 1.53 ± 0.3 ng/ml) under fasting conditions compared to mice on HFHSD alone, resulting from significantly improved insulin clearance via upregulation of hepatic insulin-degrading enzyme (IDE) and circulating IDE levels in serum. On the other hand, the expression of IDE gene in hypothalamus was significantly lower in HFHSD + CUR mice (1.3 folds) than HFHSD animals. Obesity induces hyperglycemic condition in brain by higher IDE expression to excessively break down insulin. We also observed significantly smaller islets of Langerhans (4.53 ± 0.72 vs 7.90 ± 0.34 a.u.) in HFSD + CUR fed mice and increased glucagon contents compared to HFS fed mice, indicating less secretion of insulin in pancreas under obese condition. Conclusions The conclusion of this study is that curcumin is a potent, natural therapeutic agent that can systemically regulate insulin levels in a multifaceted manner to protect against insulin resistance in aged mice. Funding Sources Intramural Research Program of NIAThe OTTOGI HAM TAIHO Foundation


2021 ◽  
Vol 8 ◽  
Author(s):  
Antonia RuJia Sun ◽  
Xiaoxin Wu ◽  
Ross Crawford ◽  
Hongxing Li ◽  
Lin Mei ◽  
...  

Obesogenic diets contribute to the pathology of osteoarthritis (OA) by altering systemic and local metabolic inflammation. Yet, it remains unclear how quickly and reproducibly the body responds to weight loss strategies and improve OA. In this study we tested whether switching obese diet to a normal chow diet can mitigate the detrimental effects of inflammatory pathways that contribute to OA pathology. Male C57BL/6 mice were first fed with obesogenic diet (high fat diet) and switched to normal chow diet (obese diet → normal diet) or continued obese diet or normal diet throughout the experiment. A mouse model of OA was induced by surgical destabilization of the medial meniscus (DMM) model into the knee joint. Outcome measures included changes in metabolic factors such as glucose, insulin, lipid, and serum cytokines levels. Inflammation in synovial biopsies was scored and inflammation was determined using FACs sorted macrophages. Cartilage degeneration was monitored using histopathology. Our results indicate, dietary switching (obese diet → normal diet) reduced body weight and restored metabolic parameters and showed less synovial tissue inflammation. Systemic blood concentrations of pro-inflammatory cytokines IL-1α, IL-6, IL-12p40, and IL-17 were decreased, and anti-inflammatory cytokines IL-4 and IL-13 were increased in dietary switch group compared to mice that were fed with obesogenic diet continuously. Although obese diet worsens the cartilage degeneration in DMM OA model, weight loss induced by dietary switch does not promote the histopathological changes of OA during this study period. Collectively, these data demonstrate that switching obesogenic diet to normal improved metabolic syndrome symptoms and can modulate both systemic and synovium inflammation levels.


Endocrinology ◽  
2020 ◽  
Vol 161 (10) ◽  
Author(s):  
Yu-Feng Zhao ◽  
Xiao-Cheng Li ◽  
Xiang-Yan Liang ◽  
Yan-Yan Zhao ◽  
Rong Xie ◽  
...  

Abstract The free fatty acid receptor G protein-coupled receptor 120 (GPR120) is expressed in pancreatic islets, but its specific cell distribution and function have not been fully established. In this study, a GPR120-IRES-EGFP knockin (KI) mouse was generated to identify GPR120-expressing cells with enhanced green fluorescence proteins (EGFP). EGFP-positive cells collected from KI mouse islets by flow cytometry had a significantly higher expression of pancreatic polypeptide (PP) evidenced by reverse transcriptase (RT)-quantitative polymerase chain reaction (qPCR). Single-cell RT-PCR and immunocytochemical double staining also demonstrated the coexpression of GPR120 with PP in mouse islets. The GPR120-specific agonist TUG-891 significantly increased plasma PP levels in mice. TUG-891 significantly increased PP levels in islet medium in vitro, which was markedly attenuated by GPR120 small interfering RNA treatment. TUG-891–stimulated PP secretion in islets was fully blocked by pretreatment with YM-254890 (a Gq protein inhibitor), U73122 (a phospholipase C inhibitor), or thapsigargin (an inducer of endoplasmic reticulum Ca2+ depletion), respectively. TUG-891 triggered the increase in intracellular free Ca2+ concentrations ([Ca2+]i) in PP cells, which was also eliminated by YM-254890, U73122, or thapsigargin. GPR120 gene expression was significantly reduced in islets of high-fat diet (HFD)-induced obese mice. TUG-891–stimulated PP secretion was also significantly diminished in vivo and in vitro in HFD-induced obese mice compared with that in normal-chow diet control mice. In summary, this study demonstrated that GPR120 is expressed in mouse islet PP cells and GPR120 activation stimulated PP secretion via the Gq/PLC-Ca2+ signaling pathway in normal-chow diet mice but with diminished effects in HFD-induced obese mice.


2019 ◽  
Vol 9 (8) ◽  
pp. 940-948
Author(s):  
Wei He ◽  
Hong-Lei Guo ◽  
Weijie Ni ◽  
Zhining Fan

The role of glucagon-like peptide-1 analog (GLP-1) in autophagic flux and lysosomal dysfunction in obesityrelated glomerulopathy (ORG) remains poorly understood. Here, we demonstrated that exposure to a high-fat diet (HFD) resulted in ectopic lipid accumulation, increased 24-hour urinary albumin, and vacuolated tubular cells. The apoptotic cell content in renal tubules was remarkably increased in the HFD group, compared to CON mice, as evident from TUNEL staining and caspase-3 expression, and significantly decreased upon switching to the normal chow diet and GLP-1 treatment. Compared to the control group, significant accumulation of Oil red O staining and CD36 and PLIN2 was observed in tubular cells of HFD mice. In the HFDG and HFD-C groups, lipid droplet deposition in tubular cells were inhibited. LC3 and p62 levels were markedly increased in proximal tubules of HFD mice, and palmitic acid impaired autophagic flux in HK2 cells. Electron microscopy revealed that non-functional lysosomal residue merged with the functional lysosome in the HFD group. GLP-1 treatment and a normal chow diet led to inhibition of enlarged lysosomal residue and restored autophagic flux. In conclusion, impaired lysosome and autophagic flux may be ameliorated by GLP-1 treatment and replacement with a normal chow diet.


2019 ◽  
Author(s):  
Mikyung Kim ◽  
So Min Lee ◽  
Jeeyoun Jung ◽  
Yun Jin Kim ◽  
Kyo Chul Moon ◽  
...  

AbstractThis study was designed to determine the effects of pineal gland-derived melatonin on obesity by employing rat pinealectomy (Pnx) model. After 10 weeks of high-fat diet (HFD) feeding, rats received sham or Pnx surgery followed by 10 weeks normal chow diet (NCD) feeding. Pnx decreased expressions of melatonin receptors, MTNR1A and MTNR1B, in brown (BAT) and white adipose tissues (WAT). Pnx rats showed increased insulin sensitivity compared with those that received sham surgery. Leptin levels were significantly decreased in the serum of Pnx group. In addition, Pnx stimulated thermogenic genes in BAT whereas attenuated lipogenic genes in WAT and the liver. Histologic analyses revealed marked decreased in the size of lipid droplets and increased expressions of UCP1 in BAT and attenuated lipid droplets in the sized and the number in the liver of Pnx group. In conclusion, these results in the current study suggest that Pnx increases thermogenesis in BAT and decreases lipogenesis in WAT and the liver.


Endocrinology ◽  
2019 ◽  
Vol 160 (10) ◽  
pp. 2485-2494 ◽  
Author(s):  
Arvand Asghari ◽  
Tomonori Ishikawa ◽  
Shiro Hiramitsu ◽  
Wan-Ru Lee ◽  
Junko Umetani ◽  
...  

Abstract 27-Hydroxycholesterol (27HC) is an abundant cholesterol metabolite and has detrimental effects on the cardiovascular system, whereas its impact on adiposity is not well known. In this study, we found that elevations in 27HC cause increased body weight gain in mice fed a high-fat/high-cholesterol diet in an estrogen receptor α–dependent manner. Regardless of diet type, body fat mass was increased by 27HC without changes in food intake or fat absorption. 27HC did not alter energy expenditure in mice fed a normal chow diet and increased visceral white adipose mass by inducing hyperplasia but not hypertrophy. Although 27HC did not augment adipocyte terminal differentiation, it increased the adipose cell population that differentiates to mature adipocytes. RNA sequencing analysis revealed that 27HC treatment of mice fed a normal chow diet induces inflammatory gene sets similar to those seen after high-fat/high-cholesterol diet feeding, whereas there was no overlap in inflammatory gene expression among any other 27HC administration/diet change combination. Histological analysis showed that 27HC treatment increased the number of total and M1-type macrophages in white adipose tissues. Thus, 27HC promotes adiposity by directly affecting white adipose tissues and by increasing adipose inflammatory responses. Lowering serum 27HC levels may lead to an approach targeting cholesterol to prevent diet-induced obesity.


2019 ◽  
Vol 10 ◽  
Author(s):  
Belal Chami ◽  
Farjaneh Hossain ◽  
Thomas W. Hambly ◽  
Xiaoping Cai ◽  
Roshanak Aran ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1681 ◽  
Author(s):  
Jihong Zhou ◽  
Limin Mao ◽  
Ping Xu ◽  
Yuefei Wang

Obesity is an escalating global epidemic caused by an imbalance between energy intake and expenditure. (−)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been reported to be conducive to preventing obesity and alleviating obesity-related chronic diseases. However, the role of EGCG in energy metabolism disorders and central nervous system dysfunction induced by a high-fat diet (HFD) remains to be elucidated. The aim of this study was to evaluate the effects of EGCG on brown adipose tissue (BAT) thermogenesis and neuroinflammation in HFD-induced obese C57BL/6J mice. Mice were randomly divided into four groups with different diets: normal chow diet (NCD), normal chow diet supplemented with 1% EGCG (NCD + EGCG), high-fat diet (HFD), and high-fat diet supplemented with 1% EGCG (HFD + EGCG). Investigations based on a four-week experiment were carried out including the BAT activity, energy consumption, mRNA expression of major inflammatory cytokines in the hypothalamus, nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) phosphorylation, and immunofluorescence staining of microglial marker Iba1 in hypothalamic arcuate nucleus (ARC). Experimental results demonstrated that dietary supplementation of EGCG significantly inhibited HFD-induced obesity by enhancing BAT thermogenesis, and attenuated the hypothalamic inflammation and microglia overactivation by regulating the NF-κB and STAT3 signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document