Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model

2016 ◽  
Vol 137 ◽  
pp. 115-124 ◽  
Author(s):  
M.M. Bhatti ◽  
A. Zeeshan ◽  
R. Ellahi
2020 ◽  
Vol 16 (5) ◽  
pp. 991-1018
Author(s):  
Mahantesh M. Nandeppanavar ◽  
M.C. Kemparaju ◽  
R. Madhusudhan ◽  
S. Vaishali

PurposeThe steady two-dimensional laminar boundary layer flow, heat and mass transfer over a flat plate with convective surface heat flux was considered. The governing nonlinear partial differential equations were transformed into a system of nonlinear ordinary differential equations and then solved numerically by Runge–Kutta method with the most efficient shooting technique. Then, the effect of variable viscosity and variable thermal conductivity on the fluid flow with thermal radiation effects and viscous dissipation was studied. Velocity, temperature and concentration profiles respectively were plotted for various values of pertinent parameters. It was found that the momentum slip acts as a boost for enhancement of the velocity profile in the boundary layer region, whereas temperature and concentration profiles decelerate with the momentum slip.Design/methodology/approachNumerical Solution is applied to find the solution of the boundary value problem.FindingsVelocity, heat transfer analysis is done with comparing earlier results for some standard cases.Originality/value100


1994 ◽  
Vol 28 (6) ◽  
pp. 486-506 ◽  
Author(s):  
R. Gorthala ◽  
J. A. Roux ◽  
J. G. Vaughan

This work presents temperature and degree of cure profiles within a pultruded composite and focuses on the development of different models used for predicting the velocity profile including a slip velocity model. This study uses a variable viscosity model and highlights the results for the velocity profile, viscosity of resin within a pultrusion die, gelation lengths, iso-gelation lines, and axial pressure profile. Gelation was predicted to occur at about one-third the distance down the die length and the degree of cure at gelation was computed to be about 0.34. The composite systems considered in this study are graphite/epoxy and fiberglass/epoxy. A comprehensive two-dimensional mathematical model in cylindrical coordinates was developed for resin flow, cure and heat transfer associated with the pultrusion process. A control-volume-based finite difference method (Patankar method) was used for solving the governing equations. The model can be utilized for ascertaining the effects of pultrusion process variables on the characteristics of the cured composite; this primarily reduces to a large extent the trial and error experimentation often required. Moreover, insight for characterization and optimization of the pultrusion process is a direct result of this modeling.


2010 ◽  
Vol 65 (8-9) ◽  
pp. 697-704 ◽  
Author(s):  
Tasawar Hayat ◽  
Zaheer Asghar

The purpose of this paper is to highlight the combined effects of heat transfer and slip characteristics of magnetohydrodynamic (MHD) fluid with variable viscosity in a channel. The slip condition is imposed in terms of shear stress. An analysis is performed to derive the perturbation solution for long wavelength and small Reynolds number assumptions. Expressions of stream function, temperature and heat transfer coefficient are constructed and discussed


Sign in / Sign up

Export Citation Format

Share Document