scholarly journals Can within-subject comparisons of thermal thresholds be used for diagnostic purposes?

2021 ◽  
Vol 6 ◽  
pp. 63-71
Author(s):  
Ø. Dunker ◽  
M.U. Lie ◽  
K.B. Nilsen
Keyword(s):  
2000 ◽  
Vol 151 (10) ◽  
pp. 385-397
Author(s):  
Bernard Primault

Many years ago, a model was elaborated to calculate the«beginning of the vegetation's period», based on temperatures only (7 days with +5 °C temperature or more). The results were correlated with phenological data: the beginning of shoots with regard to spruce and larch. The results were not satisfying, therefore, the value of the two parameters of the first model were modified without changing the second one. The result, however, was again not satisfying. Research then focused on the influence of cumulated temperatures over thermal thresholds. Nevertheless, the results were still not satisfying. The blossoming of fruit trees is influenced by the mean temperature of a given period before the winter solstice. Based on this knowledge, the study evaluated whether forest trees could also be influenced by temperature or sunshine duration of a given period in the rear autumn. The investigation was carried through from the first of January on as well as from the date of snow melt of the following year. In agricultural meteorology, the temperature sums are often interrelated with the sunshine duration, precipitation or both. However,the results were disappointing. All these calculations were made for three stations situated between 570 and 1560 m above sea-level. This allowed to draw curves of variation of the two first parameters (number of days and temperature) separately for each species observed. It was finally possible to specify the thus determined curves with data of three other stations situated between the first ones. This allows to calculate the flushing of the two tree species, if direct phenological observation is lacking. This method, however, is only applicable for the northern part of the Swiss Alps.


1996 ◽  
Vol 18 (3) ◽  
pp. 90-95 ◽  
Author(s):  
J.W. Schrama ◽  
W. van der Her ◽  
J. Gorssen ◽  
A.M. Henken ◽  
M.W.A. Verstegen ◽  
...  
Keyword(s):  

1997 ◽  
Vol 77 (1) ◽  
pp. 299-308 ◽  
Author(s):  
Geoffrey M. Bove ◽  
Michael A. Moskowitz

Bove, Geoffrey M. and Michael A. Moskowitz. Primary Afferent Neurons Innervating Guinea Pig Dura. J. Neurophysiol. 77: 299–308, 1997. We made recordings from filaments of guinea pig nasociliary nerve to study response properties of afferent axons innervating the anterior superior sagittal sinus and surrounding dura mater. We analyzed 38 units in 14 experiments. Units were initially located with the use of mechanical stimuli, and were then characterized by their conduction velocity and sensitivities to mechanical, thermal, and chemical stimuli. Single-unit recordings revealed innervation of dura and superior sagittal sinus by slowly conducting axons, mostly in the unmyelinated range. The receptive fields were 1–30 mm2, and typically had one to three punctate spots of highest sensitivity. All units tested responded to topical application of chemical agents. Ninety-seven percent of units responded to 10−5 M capsaicin, 79% responded to a mixture of inflammatory mediators, and 37% responded to an acidic buffer (pH 5). These data underline the importance of chemical sensitivity in intracranial sensation. Heat and cold stimuli evoked responses in 56 and 41% of units tested, respectively. Although the response patterns during heating were typical of polymodal nociceptors innervating other tissues, the thresholds were lower than for other tissues (32.3–42°C). Cooling led to a phasic discharge, with thresholds between 25 and 32°C. Although units had different combinations of responses to mechanical, chemical, and thermal stimuli, when grouped by their sensitivities the groups did not differ regarding mechanical thresholds or presence of ongoing activity. This suggests that meningeal primary afferents are relatively homogeneous. Sensitivities of these units are in general consistent with nociceptors, although the thermal thresholds differ. These data provide the first detailed report of response properties of intracranial primary afferent units, likely to be involved in transmission of nociception and possibly mediation of intracranial pain.


2000 ◽  
Vol 111 (9) ◽  
pp. 1561-1568 ◽  
Author(s):  
Marius A Kemler ◽  
Jos P.H Reulen ◽  
Maarten van Kleef ◽  
Gerard A.M Barendse ◽  
Frans A.J.M van den Wildenberg ◽  
...  

2001 ◽  
Vol 28 (2) ◽  
pp. 102 ◽  
Author(s):  
SA Robertson ◽  
PM Taylor ◽  
MJ Dixon ◽  
JW Sear ◽  
M Ruprah ◽  
...  
Keyword(s):  

1974 ◽  
Vol 86 (5) ◽  
pp. 902-910 ◽  
Author(s):  
Dan R. Kenshalo ◽  
E. Clarice Hall

2021 ◽  
Vol 8 ◽  
Author(s):  
Kerry-Ann van der Walt ◽  
Warren M. Potts ◽  
Francesca Porri ◽  
Alexander C. Winkler ◽  
Murray I. Duncan ◽  
...  

Climate change not only drives increases in global mean ocean temperatures, but also in the intensity and duration of marine heatwaves (MHWs), with potentially deleterious effects on local fishes. A first step to assess the vulnerability of fishes to MHWs is to quantify their upper thermal thresholds and contrast these limits against current and future ocean temperatures during such heating events. Heart failure is considered a primary mechanism governing the upper thermal limits of fishes and begins to occur at temperatures where heart rate fails to keep pace with thermal dependency of reaction rates. This point is identified by estimating the Arrhenius breakpoint temperature (TAB), which is the temperature where maximum heart rate (fHmax) first deviates from its exponential increase with temperature and the incremental Q10 breakpoint temperature (TQB), which is where the Q10 temperature coefficient (relative change in heart rate for a 10°C increase in temperature) for fHmax abruptly decreases during acute warming. Here we determined TAB, TQB and the temperature that causes cardiac arrhythmia (TARR) in adults of the marine sparid, Diplodus capensis, using an established technique. Using these thermal indices results, we further estimated adult D. capensis vulnerability to contemporary MHWs and increases in ocean temperatures along the warm-temperate south-east coast of South Africa. For the established technique, we stimulated fHmax with atropine and isoproterenol and used internal heart rate loggers to measure fHmax under conditions of acute warming in the laboratory. We estimated average TAB, TQB, and TARR values of 20.8°C, 21.0°C, and 28.3°C. These findings indicate that the physiology of D. capensis will be progressively compromised when temperatures exceed 21.0°C up to a thermal end-point of 28.3°C. Recent MHWs along the warm-temperate south-east coast, furthermore, are already occurring within the TARR threshold (26.6–30.0°C) for cardiac function in adult D. capensis, suggesting that this species may already be physiologically compromised by MHWs. Predicted increases in mean ocean temperatures of a conservative 2.0°C, may further result in adult D. capensis experiencing more frequent MHWs as well as a contraction of the northern range limit of this species as mean summer temperatures exceed the average TARR of 28.3°C.


2017 ◽  
Vol 1655 ◽  
pp. 233-241 ◽  
Author(s):  
Brian C. Kaszuba ◽  
Ian Walling ◽  
Lucy E. Gee ◽  
Damian S. Shin ◽  
Julie G. Pilitsis

Sign in / Sign up

Export Citation Format

Share Document