thermal indices
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 60)

H-INDEX

21
(FIVE YEARS 4)

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 105-114
Author(s):  
VED.PRAKASH SINGH ◽  
JIMSON MATHEW ◽  
I.J. VERMA

Due to global warming, increase in air temperature is a growing concern at present. This rise in temperature may cause mild to severe thermal discomfort and heat related hazards mostly for the people who are engaged in outside activities throughout the day. The present study shows the inter-spatial monthly distribution of thermal patches over major stations of Madhya Pradesh, viz., Bhopal, Gwalior, Indore, Jabalpur, Hoshangabad, Rewa, Ratlam, Ujjain, Dhar etc. In this study, various Heat Indices applicable for tropical climate including Wet Bulb Globe Temperature (WBGT) are used to estimate the thermal stress by analyzing the meteorological data of Summer-2018 in Madhya Pradesh. Study was carried out for computing indoor, shady and outdoor heat stress separately and heat transfer rates to identify the places vulnerable to severe heat stroke in the month of March, April and May in 2018.It is observed that declaration of heat wave alone at any station is not sufficient for the administration and health organizations to take precautionary actions; also, discomfort indices should be referred for impact based monitoring and making work schedules. It is found that March and April fall in the partial discomfort category for at least half of the districts in Madhya Pradesh. It is interesting to note that several districts fall in discomfort category in outdoor conditions but not in indoor or shady conditions in May month. Severe stresses are observed mainly in the West and Central Madhya Pradesh during April and May months. Comparison of various Heat Indices is too performed along with computing Tropical Summer Index (TSI) and Apparent Temperature (AT) to indicate real feel-like temperatures in Madhya Pradesh during extreme temperature events.


MAUSAM ◽  
2022 ◽  
Vol 63 (3) ◽  
pp. 449-454
Author(s):  
MOHAN SINGH ◽  
H.S. BHATIA

Field experiments were conducted on gravel sandy soil of research farm of Horticultural Research Station, Seobag in Kullu valley with ten varieties of apple for three seasons (2008-2010). In the first crop season all the varieties matured within 157-188 days, while in the second and third seasons the crop matured with 159-179 and 156-187 days, respectively. The mean GDD accumulation from bud burst to fruit set was from 382 to 419° D and to maturity 2310 to 2957° D. The varieties, Mollice and Starkrimson consumed the lowest and highest GDD for attaining physiological maturity in different seasons among all varieties. But Commercial and Tydeman consumed the lowest and highest GDD for fruit setting. The photo thermal index (PTI) in all the varieties and seasons varied from 7.2 to 16.8 and 13.2 to 18.4° D/day at flowering and reproductive stages respectively.


2021 ◽  
Vol 14 (1) ◽  
pp. 391
Author(s):  
Yiannis G. Zevgolis ◽  
Efstratios Kamatsos ◽  
Triantaphyllos Akriotis ◽  
Panayiotis G. Dimitrakopoulos ◽  
Andreas Y. Troumbis

Conservation of traditional olive groves through effective monitoring of their health state is crucial both at a tree and at a population level. In this study, we introduce a comprehensive methodological framework for estimating the traditional olive grove health state, by considering the fundamental phenotypic, spectral, and thermal traits of the olive trees. We obtained phenotypic information from olive trees on the Greek island of Lesvos by combining this with in situ measurement of spectral reflectance and thermal indices to investigate the effect of the olive tree traits on productivity, the presence of the olive leaf spot disease (OLS), and olive tree classification based on their health state. In this context, we identified a suite of important features, derived from linear and logistic regression models, which can explain productivity and accurately evaluate infected and noninfected trees. The results indicated that either specific traits or combinations of them are statistically significant predictors of productivity, while the occurrence of OLS symptoms can be identified by both the olives’ vitality traits and by the thermal variables. Finally, the classification of olive trees into different health states possibly offers significant information to explain traditional olive grove dynamics for their sustainable management.


MAUSAM ◽  
2021 ◽  
Vol 67 (2) ◽  
pp. 397-404
Author(s):  
RIJUMANI RAJBONGSHI ◽  
PRASANTA NEOG ◽  
P. K. SARMA ◽  
KUSHAL SARMAH ◽  
M. K. SARMA ◽  
...  

Two varieties of pigeon pea viz., BC (local) and ICPL 88039 were grown on the sandy loam soils of AICRPDA research farm of B. N. College of Agriculture, AAU in two consecutive kharif seasons of 2012-13 to 2013-14. Both the cultivars were sown on three different dates at ten days interval starting from 3rd June to 23rd June. GDD accumulation for attaining different phenological events viz., emergence, initiation of 1st flower bud and flower appearance, 50 per cent flowering, 1st pod formation, 1st seed formation and physiological maturity were worked out. The cumulative GDD accumulations up to physiological maturity were relatively higher in BC (local) which varied from 3395.6 to 3593.5 °C day, whereas, in ICPL 88039, it varied from 2945.0 to 3296.7 °C day in different sowings and seasons. A decreasing trend in accumulated GDD for attaining any Phenological event was observed with successive delay in sowings in both the cultivars in the two seasons. In both the crop seasons, Pheno-Thermal Index (PTI) varied from 16.67 to 18.18 °C day growth day-1, in BC (local) and 18.31 to 19.11 °C day growthday-1 in ICPL 88039 during the vegetative growth period under all the sowing dates while, in the reproductive growth stage, it was comparatively lower and ranged from 7.96 to 8.23 °C day growthday-1 in BC (local) and 10.28 to 11.87 °C day growthday-1 in ICPL 88039. Seed yield heat use efficiency (HUE) in BC (local) varied from 0.207 to 0.296 kg ha-1 °Cday-1, whereas, in ICPL 88039 it varied from 0.201 to 0.312 kg ha-1°Cday-1 under different sowing dates in both crop seasons. Seed yield heat use efficiency was relatively higher in 2013-14 followed by 2012-13 in both the cultivars which indicated the significant differences in using the heat, available to the plants.   


2021 ◽  
Vol 7 ◽  
Author(s):  
Timothy O. Adekunle

This research discusses thermal indices and outdoor comfort before and during the Coronavirus Disease of 2019 (COVID-19) pandemic in three counties in Connecticut (41.6032°N, 73.0877°W), United States. The counties are Fairfield, Hartford, and New Haven. Existing research noted that people residing in highly populated urban and low-income areas are disproportionately affected by the pandemic and subject to health, heat, and cold stress-related problems. As a result, the study is motivated to examine outdoor comfort and thermal indices in the counties that account for over 75% of the population in the state. The specific aim of the study is to examine outdoor comfort and thermal indices a year before and during the pandemic to determine if the pandemic significantly affects outdoor occupants and their overall well-being. Due to lesser activities observed during the pandemic than before the pandemic, the research questions include 1) Does the pandemic year provide a more comfortable thermal environment for outdoor occupants than the period before the pandemic? 2) Does the period provide a cleaner environment with no thermal or cold stress to occupants than before the pandemic? The research approaches include the field data recorded in 2019 and 2020. The research also utilized observations and mathematical models. The findings revealed that the mean monthly temperatures varied from −3.2°C to 25.2°C and relative humidity ranged from and 62.6–70.7%. The study revealed cold stress in wintertime, especially in Fairfield. Heat stress is also noted in summertime across the counties. New Haven is more prone to heat stress than other counties because of some factors (such as climate change, lesser land area, higher incidence from solar radiation, etc.). Higher thermal indices are reported in 2020 (during the pandemic) than the indices computed for 2019 (pre-pandemic) which could influence thermal comfort, health, and well-being of people. The indices are strongly influenced by outdoor temperatures and dew-point. A combination of some environmental variables such as temperature and wind speed also have significant effects on the indices. The study recommends that the use of clean energy for running infrastructure systems would help in mitigating the impact of climate change in various locations. The investigation suggests that a thorough evaluation of environmental conditions and interventions should be explored for developing resilience to emergencies in cities and urban areas. The research outcomes provide useful information for designers, planners, stakeholders, policymakers, etc., to develop pathways for achieving resilient zero-carbon cities in various places.


2021 ◽  
Vol 23 (4) ◽  
pp. 416-422
Author(s):  
RAJNI SHARMA ◽  
DIVYA S. KUMAR ◽  
A.S. BRAR ◽  
SOM PAL SINGH

A field experiment was conducted during rabi 2016-17 and 2017-18, at the Research Farm of Department of Agronomy, Punjab Agricultural University, Ludhiana, to study the phenological behaviour of gobhi sarson (Brassicanapus L.) and thermal indices as influenced by drip irrigation (60, 80 and 100% of cumulative pan-evaporation, CPE) and fertigation schedules (60, 80 and 100 % recommended dose of fertilizers, RDF) in comparison with conventional flood irrigation and manual application of fertilizers i.e. absolute control. The pooled data revealed that Brassica irrigated through drip at 100 % of CPE took maximum number of days to attain 50% flowering, 50% siliqua formation and physiological maturity, followed by 80 and 60% of CPE. Higher fertigation levels also delayed the number of days taken to attain various phenological stages. Maximum seed yield was observed at 100% of CPE with 100% RDF which was statistically at par with 100% of CPE with 80% RDF and 80% of CPE with 80 or 100% RDF, but significantly higher than absolute control. Maximum accumulation of heat units along with heat use efficiency (1.49 kg grains ha-1 °C day hour-1) was also obtained at 100% of CPE with 100% RDF. 


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7468
Author(s):  
Timothy O. Adekunle

Colonial Revival style residences have unique architectural features amongst others. They are common multi-family residences in the United States with no or limited information about their performance. The research purpose is to assess indoor comfort, energy performance, and thermal indices in multi-family Colonial Revival style residences. The research questions include (i) Do Colonial Revival style buildings perform better than other old buildings? (ii) Do the buildings consume additional electricity than typical and other old buildings? The research examined four case studies in Hartford County, Connecticut. The investigation explored comfort surveys, monitoring, collection of actual electricity usage, and assessed thermal indices using mathematical models. The average indoor temperature of 25.4 °C and relative humidity (RH) of 61.3% are reported. About 67% of the residents are thermally comfortable. The research noted significance between thermal sensation and other variables, excluding how occupants feel about the air movement. The average number of hours of temperature exceeds 28.0 °C and 30.0 °C marks for over 11.4% and 2.5% of the time, respectively, except in one of the buildings. The mean indoor temperatures are within the applicable bands of the adaptive comfort models. The averages of actual thermal sensation vote (TSV) ranged from 3.32 to 4.37 on a 7-point sensation scale. The mean neutral temperatures varied from 24.2–25.6 °C. The average monthly electricity bill is within the national average for residences in summer, excluding in August. The mean wet-bulb globe temperature (WBGT) of 21.1–22.3 °C and summer simmer index (SSI) of 30.1–32.4 °C are calculated as feasible bands for thermal indices in the buildings. The basements are more comfortable than other spaces within the case studies. The research outcomes can be used for future developments of Colonial Revival style and other similar buildings. The study recommends interventions such as retrofit to improve the performance of some existing Colonial Revival style buildings, especially the older ones that are less insulated with outdated equipment and appliances.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2459
Author(s):  
Geqi Yan ◽  
Hao Li ◽  
Zhengxiang Shi

Many thermal indices (TIs) have been developed to quantify the severity of heat stress in dairy cows. Systematic evaluation of the representative TIs is still lacking, which may cause potential misapplication. The objectives of this study were to evaluate the theoretical and actual performance of the TIs in a temperate climate. The data were collected in freestall barns at a commercial dairy farm. The heat transfer characteristics of the TIs were examined by equivalent air temperature change (ΔTeq). One-way ANOVA and correlation were used to test the relationships between the TIs and the animal-based indicators (i.e., rectal temperature (RT), respiration rate (RR), skin temperature (ST), and eye temperature (ET)). Results showed that the warming effect of the increased relative humidity and the chilling effect of the increased wind speed was the most reflected by the equivalent temperature index (ETI) and the comprehensive climate index (CCI), respectively. Only the equivalent temperature index for cows (ETIC) reflected that warming effect of solar radiation could obviously increase with increasing Ta. The THI and ETIC showed expected relationships with the RT and RR, whereas the CCI and ETIC showed expected relationships with the ST and ET. Moreover, CCI showed a higher correlation with RT (r = 0.672, p < 0.01), ST(r = 0.845, p < 0.01), and ET (r = 0.617, p < 0.01) than other TIs (p < 0.0001). ETIC showed the highest correlation with RR (r = 0.850, p < 0.01). These findings demonstrated that the CCI could be the most promising thermal index to assess heat stress for housed dairy cows. Future research is still needed to develop new TIs tp precisely assess the microclimates in cow buildings.


2021 ◽  
pp. 103205
Author(s):  
Mohammad Haghshenas ◽  
Mohammad Hadianpour ◽  
Andreas Matzarakis ◽  
Mohammadjavad Mahdavinejad ◽  
Mojtaba Ansari

2021 ◽  
Vol 8 ◽  
Author(s):  
Kerry-Ann van der Walt ◽  
Warren M. Potts ◽  
Francesca Porri ◽  
Alexander C. Winkler ◽  
Murray I. Duncan ◽  
...  

Climate change not only drives increases in global mean ocean temperatures, but also in the intensity and duration of marine heatwaves (MHWs), with potentially deleterious effects on local fishes. A first step to assess the vulnerability of fishes to MHWs is to quantify their upper thermal thresholds and contrast these limits against current and future ocean temperatures during such heating events. Heart failure is considered a primary mechanism governing the upper thermal limits of fishes and begins to occur at temperatures where heart rate fails to keep pace with thermal dependency of reaction rates. This point is identified by estimating the Arrhenius breakpoint temperature (TAB), which is the temperature where maximum heart rate (fHmax) first deviates from its exponential increase with temperature and the incremental Q10 breakpoint temperature (TQB), which is where the Q10 temperature coefficient (relative change in heart rate for a 10°C increase in temperature) for fHmax abruptly decreases during acute warming. Here we determined TAB, TQB and the temperature that causes cardiac arrhythmia (TARR) in adults of the marine sparid, Diplodus capensis, using an established technique. Using these thermal indices results, we further estimated adult D. capensis vulnerability to contemporary MHWs and increases in ocean temperatures along the warm-temperate south-east coast of South Africa. For the established technique, we stimulated fHmax with atropine and isoproterenol and used internal heart rate loggers to measure fHmax under conditions of acute warming in the laboratory. We estimated average TAB, TQB, and TARR values of 20.8°C, 21.0°C, and 28.3°C. These findings indicate that the physiology of D. capensis will be progressively compromised when temperatures exceed 21.0°C up to a thermal end-point of 28.3°C. Recent MHWs along the warm-temperate south-east coast, furthermore, are already occurring within the TARR threshold (26.6–30.0°C) for cardiac function in adult D. capensis, suggesting that this species may already be physiologically compromised by MHWs. Predicted increases in mean ocean temperatures of a conservative 2.0°C, may further result in adult D. capensis experiencing more frequent MHWs as well as a contraction of the northern range limit of this species as mean summer temperatures exceed the average TARR of 28.3°C.


Sign in / Sign up

Export Citation Format

Share Document