Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems

Author(s):  
Enyu Fan ◽  
Changpin Li ◽  
Zhiqiang Li
Filomat ◽  
2018 ◽  
Vol 32 (11) ◽  
pp. 3957-3991
Author(s):  
Yuji Liu ◽  
Xiaohui Yang

In this article, we present a method for converting boundary value problems for impulsive fractional differential systems involving the Riemann-Liouville type Hadamard fractional derivatives to integral systems. The existence results for solutions of this kind of boundary value problems are established. Our analysis relies on the well known fixed point theorem. Some comments on recent published papers are made at the end of the paper.


Author(s):  
Yuji Liu

AbstractSufficient conditions are given for the existence of solutions of anti-periodic value problems for impulsive fractional differential systems involving both Caputo and Riemann–Liouville fractional derivatives. We allow the nonlinearities$p(t)f(t,x,y,z,w)$and$q(t)g(t,x,y,z,w)$in fractional differential equations to be singular at$t=0$and$t=1$. Both$f$and$g$may be super-linear and sub-linear. The analysis relies on some well known fixed point theorems. The initial value problem discussed may be seen as a generalization of some ecological models. An example is given to illustrate the efficiency of the main theorems. Many unsuitable lemmas in recent published papers are pointed out in order not to mislead readers. A conclusion section is given at the end of the paper.


Author(s):  
Yong-Kui Chang ◽  
Aldo Pereira ◽  
Rodrigo Ponce

AbstractThis paper treats the approximate controllability of fractional differential systems of Sobolev type in Banach spaces. We first characterize the properties on the norm continuity and compactness of some resolvent operators (also called solution operators). And then via the obtained properties on resolvent operators and fixed point technique, we give some approximate controllability results for Sobolev type fractional differential systems in the Caputo and Riemann-Liouville fractional derivatives with order 1 <


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Daliang Zhao ◽  
Juan Mao

In this paper, sufficient conditions ensuring existence and multiplicity of positive solutions for a class of nonlinear singular fractional differential systems are derived with Riemann–Stieltjes coupled integral boundary value conditions in Banach Spaces. Nonlinear functions f(t,u,v) and g(t,u,v) in the considered systems are allowed to be singular at every variable. The boundary conditions here are coupled forms with Riemann–Stieltjes integrals. In order to overcome the difficulties arising from the singularity, a suitable cone is constructed through the properties of Green’s functions associated with the systems. The main tool used in the present paper is the fixed point theorem on cone. Lastly, an example is offered to show the effectiveness of our obtained new results.


2020 ◽  
Vol 23 (2) ◽  
pp. 553-570 ◽  
Author(s):  
Li Ma

AbstractThis paper is devoted to the investigation of the kinetics of Hadamard-type fractional differential systems (HTFDSs) in two aspects. On one hand, the nonexistence of non-trivial periodic solutions for general HTFDSs, which are considered in some functional spaces, is proved and the corresponding eigenfunction of Hadamard-type fractional differential operator is also discussed. On the other hand, by the generalized Gronwall-type inequality, we estimate the bound of the Lyapunov exponents for HTFDSs. In addition, numerical simulations are addressed to verify the obtained theoretical results.


2007 ◽  
Vol 17 (11) ◽  
pp. 3965-3983 ◽  
Author(s):  
WEIHUA DENG

This paper discusses the stair function approach for the generation of scroll grid attractors of fractional differential systems. The one-directional (1-D) n-grid scroll, two-directional (2-D) (n × m)-grid scroll and three-directional (3-D) (n × m × l)-grid scroll attractors are created from a fractional linear autonomous system with a simple stair function controller. Being similar to the scroll grid attractors of classical differential systems, the scrolls of 1-D n-grid scroll, 2-D (n × m)-grid scroll and 3-D (n × m × l)-grid scroll attractors are located around the equilibria of fractional differential system on a line, on a plane or in 3D, respectively and the number of scrolls is equal to the corresponding number of equilibria.


Sign in / Sign up

Export Citation Format

Share Document