ECNN: Enhanced Convolutional Neural Network for Efficient Diagnosis of The Autism Spectrum Disorder

Author(s):  
Rasha Kashef
2021 ◽  
Vol 14 ◽  
Author(s):  
Jingjing Gao ◽  
Mingren Chen ◽  
Yuanyuan Li ◽  
Yachun Gao ◽  
Yanling Li ◽  
...  

Autism spectrum disorder (ASD) is a range of neurodevelopmental disorders with behavioral and cognitive impairment and brings huge burdens to the patients’ families and the society. To accurately identify patients with ASD from typical controls is important for early detection and early intervention. However, almost all the current existing classification methods for ASD based on structural MRI (sMRI) mainly utilize the independent local morphological features and do not consider the covariance patterns of these features between regions. In this study, by combining the convolutional neural network (CNN) and individual structural covariance network, we proposed a new framework to classify ASD patients with sMRI data from the ABIDE consortium. Moreover, gradient-weighted class activation mapping (Grad-CAM) was applied to characterize the weight of features contributing to the classification. The experimental results showed that our proposed method outperforms the currently used methods for classifying ASD patients with the ABIDE data and achieves a high classification accuracy of 71.8% across different sites. Furthermore, the discriminative features were found to be mainly located in the prefrontal cortex and cerebellum, which may be the early biomarkers for the diagnosis of ASD. Our study demonstrated that CNN is an effective tool to build the framework for the diagnosis of ASD with individual structural covariance brain network.


2020 ◽  
Vol 13 ◽  
Author(s):  
Zeinab Sherkatghanad ◽  
Mohammadsadegh Akhondzadeh ◽  
Soorena Salari ◽  
Mariam Zomorodi-Moghadam ◽  
Moloud Abdar ◽  
...  

2021 ◽  
Author(s):  
Federica Cilia ◽  
Romuald Carette ◽  
Mahmoud Elbattah ◽  
Gilles Dequen ◽  
Jean-Luc Guérin ◽  
...  

BACKGROUND The early diagnosis of autism spectrum disorder (ASD) is highly desirable but remains a challenging task, which requires a set of cognitive tests and hours of clinical examinations. In addition, variations of such symptoms exist, which can make the identification of ASD even more difficult. Although diagnosis tests are largely developed by experts, they are still subject to human bias. In this respect, computer-assisted technologies can play a key role in supporting the screening process. OBJECTIVE This paper follows on the path of using eye tracking as an integrated part of screening assessment in ASD based on the characteristic elements of the eye gaze. This study adds to the mounting efforts in using eye tracking technology to support the process of ASD screening METHODS The proposed approach basically aims to integrate eye tracking with visualization and machine learning. A group of 59 school-aged participants took part in the study. The participants were invited to watch a set of age-appropriate photographs and videos related to social cognition. Initially, eye-tracking scanpaths were transformed into a visual representation as a set of images. Subsequently, a convolutional neural network was trained to perform the image classification task. RESULTS The experimental results demonstrated that the visual representation could simplify the diagnostic task and also attained high accuracy. Specifically, the convolutional neural network model could achieve a promising classification accuracy. This largely suggests that visualizations could successfully encode the information of gaze motion and its underlying dynamics. Further, we explored possible correlations between the autism severity and the dynamics of eye movement based on the maximal information coefficient. The findings primarily show that the combination of eye tracking, visualization, and machine learning have strong potential in developing an objective tool to assist in the screening of ASD. CONCLUSIONS Broadly speaking, the approach we propose could be transferable to screening for other disorders, particularly neurodevelopmental disorders.


Most recent discoveries in Autism Spectrum Disorder (ASD) detection and classification studies reveal that there is a substantial relationship between Autism disorders and gene sequences. This work is indented to classify the autism spectrum disorder groups and sub-groups based on the gene sequences. The gene sequences are large data and perplexed for handling with conventional data mining or classification procedures. The Consecrate Recurrent Neural Network Classifier for Autism Classification (CRNNC-AC) work is introduced in this work to classify autism disorders using gene sequence data. A dedicated Elman [1] type Recurrent Neural Network (RNN) is introduced along with a legacy Long Short-Term Memory (LSTM) [2] in this classifier. The LSTM model is contrived to achieve memory optimization to eliminate memory overflows without affecting the classification accuracy. The classification quality metrics [3] such as Accuracy, Sensitivity, Specificity and F1-Score are concerned for optimization. The processing time of the proposed method is also measured to evaluate the pertinency.


Sign in / Sign up

Export Citation Format

Share Document