scholarly journals Identification of Autism Spectrum Disorder using Deep Neural Network

2021 ◽  
Vol 1921 ◽  
pp. 012006
Author(s):  
Ashima Sindhu Mohanty ◽  
Priyadarsan Parida ◽  
K C Patra
2021 ◽  
Vol 15 ◽  
Author(s):  
Fahad Almuqhim ◽  
Fahad Saeed

Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understanding of the neurological mechanisms underlying ASD necessitates the identification of new biomarkers that can aid in study of brain development, and functioning, and can lead to accurate and early detection of ASD. In this paper, we developed a deep-learning model called ASD-SAENet for classifying patients with ASD from typical control subjects using fMRI data. We designed and implemented a sparse autoencoder (SAE) which results in optimized extraction of features that can be used for classification. These features are then fed into a deep neural network (DNN) which results in superior classification of fMRI brain scans more prone to ASD. Our proposed model is trained to optimize the classifier while improving extracted features based on both reconstructed data error and the classifier error. We evaluated our proposed deep-learning model using publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset collected from 17 different research centers, and include more than 1,035 subjects. Our extensive experimentation demonstrate that ASD-SAENet exhibits comparable accuracy (70.8%), and superior specificity (79.1%) for the whole dataset as compared to other methods. Further, our experiments demonstrate superior results as compared to other state-of-the-art methods on 12 out of the 17 imaging centers exhibiting superior generalizability across different data acquisition sites and protocols. The implemented code is available on GitHub portal of our lab at: https://github.com/pcdslab/ASD-SAENet.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Muhammad Kashif Hanif ◽  
Naba Ashraf ◽  
Muhammad Umer Sarwar ◽  
Deleli Mesay Adinew ◽  
Reehan Yaqoob

Autism spectrum disorder is an inherited long-living and neurological disorder that starts in the early age of childhood with complicated causes. Autism spectrum disorder can lead to mental disorders such as anxiety, miscommunication, and limited repetitive interest. If the autism spectrum disorder is detected in the early childhood, it will be very beneficial for children to enhance their mental health level. In this study, different machine and deep learning algorithms were applied to classify the severity of autism spectrum disorder. Moreover, different optimization techniques were employed to enhance the performance. The deep neural network performed better when compared with other approaches.


2021 ◽  
Vol 14 ◽  
Author(s):  
Jingjing Gao ◽  
Mingren Chen ◽  
Yuanyuan Li ◽  
Yachun Gao ◽  
Yanling Li ◽  
...  

Autism spectrum disorder (ASD) is a range of neurodevelopmental disorders with behavioral and cognitive impairment and brings huge burdens to the patients’ families and the society. To accurately identify patients with ASD from typical controls is important for early detection and early intervention. However, almost all the current existing classification methods for ASD based on structural MRI (sMRI) mainly utilize the independent local morphological features and do not consider the covariance patterns of these features between regions. In this study, by combining the convolutional neural network (CNN) and individual structural covariance network, we proposed a new framework to classify ASD patients with sMRI data from the ABIDE consortium. Moreover, gradient-weighted class activation mapping (Grad-CAM) was applied to characterize the weight of features contributing to the classification. The experimental results showed that our proposed method outperforms the currently used methods for classifying ASD patients with the ABIDE data and achieves a high classification accuracy of 71.8% across different sites. Furthermore, the discriminative features were found to be mainly located in the prefrontal cortex and cerebellum, which may be the early biomarkers for the diagnosis of ASD. Our study demonstrated that CNN is an effective tool to build the framework for the diagnosis of ASD with individual structural covariance brain network.


Most recent discoveries in Autism Spectrum Disorder (ASD) detection and classification studies reveal that there is a substantial relationship between Autism disorders and gene sequences. This work is indented to classify the autism spectrum disorder groups and sub-groups based on the gene sequences. The gene sequences are large data and perplexed for handling with conventional data mining or classification procedures. The Consecrate Recurrent Neural Network Classifier for Autism Classification (CRNNC-AC) work is introduced in this work to classify autism disorders using gene sequence data. A dedicated Elman [1] type Recurrent Neural Network (RNN) is introduced along with a legacy Long Short-Term Memory (LSTM) [2] in this classifier. The LSTM model is contrived to achieve memory optimization to eliminate memory overflows without affecting the classification accuracy. The classification quality metrics [3] such as Accuracy, Sensitivity, Specificity and F1-Score are concerned for optimization. The processing time of the proposed method is also measured to evaluate the pertinency.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jinlong Hu ◽  
Lijie Cao ◽  
Tenghui Li ◽  
Bin Liao ◽  
Shoubin Dong ◽  
...  

Deep neural networks have recently been applied to the study of brain disorders such as autism spectrum disorder (ASD) with great success. However, the internal logics of these networks are difficult to interpret, especially with regard to how specific network architecture decisions are made. In this paper, we study an interpretable neural network model as a method to identify ASD participants from functional magnetic resonance imaging (fMRI) data and interpret results of the model in a precise and consistent manner. First, we propose an interpretable fully connected neural network (FCNN) to classify two groups, ASD versus healthy controls (HC), based on input data from resting-state functional connectivity (rsFC) between regions of interests (ROIs). The proposed FCNN model is a piecewise linear neural network (PLNN) which uses piecewise linear function LeakyReLU as its activation function. We experimentally compared the FCNN model against widely used classification models including support vector machine (SVM), random forest, and two new classes of deep neural network models in a large dataset containing 871 subjects from ABIDE I database. The results show the proposed FCNN model achieves the highest classification accuracy. Second, we further propose an interpreting method which could explain the trained model precisely with a precise linear formula for each input sample and decision features which contributed most to the classification of ASD versus HC participants in the model. We also discuss the implications of our proposed approach for fMRI data classification and interpretation.


Sign in / Sign up

Export Citation Format

Share Document