scholarly journals Multisite Autism Spectrum Disorder Classification Using Convolutional Neural Network Classifier and Individual Morphological Brain Networks

2021 ◽  
Vol 14 ◽  
Author(s):  
Jingjing Gao ◽  
Mingren Chen ◽  
Yuanyuan Li ◽  
Yachun Gao ◽  
Yanling Li ◽  
...  

Autism spectrum disorder (ASD) is a range of neurodevelopmental disorders with behavioral and cognitive impairment and brings huge burdens to the patients’ families and the society. To accurately identify patients with ASD from typical controls is important for early detection and early intervention. However, almost all the current existing classification methods for ASD based on structural MRI (sMRI) mainly utilize the independent local morphological features and do not consider the covariance patterns of these features between regions. In this study, by combining the convolutional neural network (CNN) and individual structural covariance network, we proposed a new framework to classify ASD patients with sMRI data from the ABIDE consortium. Moreover, gradient-weighted class activation mapping (Grad-CAM) was applied to characterize the weight of features contributing to the classification. The experimental results showed that our proposed method outperforms the currently used methods for classifying ASD patients with the ABIDE data and achieves a high classification accuracy of 71.8% across different sites. Furthermore, the discriminative features were found to be mainly located in the prefrontal cortex and cerebellum, which may be the early biomarkers for the diagnosis of ASD. Our study demonstrated that CNN is an effective tool to build the framework for the diagnosis of ASD with individual structural covariance brain network.

2020 ◽  
Vol 13 ◽  
Author(s):  
Zeinab Sherkatghanad ◽  
Mohammadsadegh Akhondzadeh ◽  
Soorena Salari ◽  
Mariam Zomorodi-Moghadam ◽  
Moloud Abdar ◽  
...  

2021 ◽  
Author(s):  
Federica Cilia ◽  
Romuald Carette ◽  
Mahmoud Elbattah ◽  
Gilles Dequen ◽  
Jean-Luc Guérin ◽  
...  

BACKGROUND The early diagnosis of autism spectrum disorder (ASD) is highly desirable but remains a challenging task, which requires a set of cognitive tests and hours of clinical examinations. In addition, variations of such symptoms exist, which can make the identification of ASD even more difficult. Although diagnosis tests are largely developed by experts, they are still subject to human bias. In this respect, computer-assisted technologies can play a key role in supporting the screening process. OBJECTIVE This paper follows on the path of using eye tracking as an integrated part of screening assessment in ASD based on the characteristic elements of the eye gaze. This study adds to the mounting efforts in using eye tracking technology to support the process of ASD screening METHODS The proposed approach basically aims to integrate eye tracking with visualization and machine learning. A group of 59 school-aged participants took part in the study. The participants were invited to watch a set of age-appropriate photographs and videos related to social cognition. Initially, eye-tracking scanpaths were transformed into a visual representation as a set of images. Subsequently, a convolutional neural network was trained to perform the image classification task. RESULTS The experimental results demonstrated that the visual representation could simplify the diagnostic task and also attained high accuracy. Specifically, the convolutional neural network model could achieve a promising classification accuracy. This largely suggests that visualizations could successfully encode the information of gaze motion and its underlying dynamics. Further, we explored possible correlations between the autism severity and the dynamics of eye movement based on the maximal information coefficient. The findings primarily show that the combination of eye tracking, visualization, and machine learning have strong potential in developing an objective tool to assist in the screening of ASD. CONCLUSIONS Broadly speaking, the approach we propose could be transferable to screening for other disorders, particularly neurodevelopmental disorders.


2019 ◽  
Author(s):  
Sun Jae Moon ◽  
Jin Seub Hwang ◽  
Rajesh Kana ◽  
John Torous ◽  
Jung Won Kim

BACKGROUND Over the recent years, machine learning algorithms have been more widely and increasingly applied in biomedical fields. In particular, its application has been drawing more attention in the field of psychiatry, for instance, as diagnostic tests/tools for autism spectrum disorder. However, given its complexity and potential clinical implications, there is ongoing need for further research on its accuracy. OBJECTIVE The current study aims to summarize the evidence for the accuracy of use of machine learning algorithms in diagnosing autism spectrum disorder (ASD) through systematic review and meta-analysis. METHODS MEDLINE, Embase, CINAHL Complete (with OpenDissertations), PsyINFO and IEEE Xplore Digital Library databases were searched on November 28th, 2018. Studies, which used a machine learning algorithm partially or fully in classifying ASD from controls and provided accuracy measures, were included in our analysis. Bivariate random effects model was applied to the pooled data in meta-analysis. Subgroup analysis was used to investigate and resolve the source of heterogeneity between studies. True-positive, false-positive, false negative and true-negative values from individual studies were used to calculate the pooled sensitivity and specificity values, draw SROC curves, and obtain area under the curve (AUC) and partial AUC. RESULTS A total of 43 studies were included for the final analysis, of which meta-analysis was performed on 40 studies (53 samples with 12,128 participants). A structural MRI subgroup meta-analysis (12 samples with 1,776 participants) showed the sensitivity at 0.83 (95% CI-0.76 to 0.89), specificity at 0.84 (95% CI -0.74 to 0.91), and AUC/pAUC at 0.90/0.83. An fMRI/deep neural network (DNN) subgroup meta-analysis (five samples with 1,345 participants) showed the sensitivity at 0.69 (95% CI- 0.62 to 0.75), the specificity at 0.66 (95% CI -0.61 to 0.70), and AUC/pAUC at 0.71/0.67. CONCLUSIONS Machine learning algorithms that used structural MRI features in diagnosis of ASD were shown to have accuracy that is similar to currently used diagnostic tools.


Sign in / Sign up

Export Citation Format

Share Document