scholarly journals Food web engineering: ecology and evolution to improve biological pest control

Author(s):  
Marta Montserrat ◽  
Diego Serrano-Carnero ◽  
Inmaculada Torres-Campos ◽  
Mehdi Bohloolzadeh ◽  
Dolores Ruiz-Lupión ◽  
...  
2008 ◽  
Vol 99 (5) ◽  
pp. 433-444 ◽  
Author(s):  
J.J. González-Fernández ◽  
F. de la Peña ◽  
J.I. Hormaza ◽  
J.R. Boyero ◽  
J.M. Vela ◽  
...  

AbstractEcological communities used in biological pest control are usually represented as three-trophic level food chains with top-down control. However, at least two factors complicate this simple way of characterizing agricultural communities. First, agro-ecosystems are composed of several interacting species forming complicated food webs. Second, the structure of agricultural communities may vary in time. Efficient pest management approaches need to integrate these two factors to generate better predictions for pest control. In this work, we identified the food web components of an avocado agro-ecosystem, and unravelled patterns of co-occurrence and interactions between these components through field and laboratory experiments. This allowed us to predict community changes that would improve the performance of the naturally occurring predators and to test these predictions in field population experiments. Field surveys revealed that the food-web structure and species composition of the avocado community changed in time. In spring, the community was characterized by a linear food chain ofEuseius stipulatus, an omnivorous mite, feeding on pollen. In the summer,E. stipulatusand a predatory mite,Neoseiulus californicus, shared a herbivorous mite prey. Laboratory experiments confirmed these trophic interactions and revealed thatN. californicuscan feed inside the prey nests, whereasE. stipulatuscannot, which may further reduce competition among predators. Finally, we artificially increased the coexistence of the two communities via addition of the non-herbivore food source (pollen) for the omnivore. This led to an increase in predator numbers and reduced populations of the herbivore. Therefore, the presence of pollen is expected to improve pest control in this system.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 180
Author(s):  
Stefan Möth ◽  
Andreas Walzer ◽  
Markus Redl ◽  
Božana Petrović ◽  
Christoph Hoffmann ◽  
...  

Viticultural practices and landscape composition are the main drivers influencing biological pest control in vineyards. Predatory mites, mainly phytoseiid (Phytoseiidae) and tydeoid mites (Tydeidae), are important to control phytophagous mites (Tetranychidae and Eriophyidae) on vines. In the absence of arthropod prey, pollen is an important food source for predatory mites. In 32 paired vineyards located in Burgenland/Austria, we examined the effect of landscape composition, management type (organic/integrated), pesticide use, and cover crop diversity of the inter-row on the densities of phytoseiid, tydeoid, and phytophagous mites. In addition, we sampled pollen on vine leaves. Typhlodromus pyri Scheuten was the main phytoseiid mite species and Tydeus goetzi Schruft the main tydeoid species. Interestingly, the area-related acute pesticide toxicity loading was higher in organic than in integrated vineyards. The densities of phytoseiid and tydeoid mites was higher in integrated vineyards and in vineyards with spontaneous vegetation. Their population also profited from an increased viticultural area at the landscape scale. Eriophyoid mite densities were extremely low across all vineyards and spider mites were absent. Biological pest control of phytophagous mites benefits from less intensive pesticide use and spontaneous vegetation cover in vineyard inter-rows, which should be considered in agri-environmental schemes.


2013 ◽  
Vol 58 (1) ◽  
pp. 119-140 ◽  
Author(s):  
Trevor Williams ◽  
Hugo C. Arredondo-Bernal ◽  
Luis A. Rodríguez-del-Bosque

2013 ◽  
Vol 14 (3) ◽  
pp. 449 ◽  
Author(s):  
Dimitrije Marković

Crop monocultures encourage the multiplication and spread of pest insects on massive and uniform crop. Numerous studies have evaluated the impact of plant diversification on pests and beneficial arthropods population dynamics in agricultural ecosystems and provided some evidence that habitat manipulation techniques like intercropping can significantly influence pest control. This paper describes various potential options of habitat management and design that enhance ecological role of biodiversity in agroecosystems. The focus of this review is the application and mechanisms of biodiversity in agricultural systems to enhance pest management.


2018 ◽  
Vol 5 (4) ◽  
pp. 427-440 ◽  
Author(s):  
Shimu Karmaker ◽  
Fatema Yesmen Ruhi ◽  
Uzzwal Kumar Mallick

2004 ◽  
Vol 86 (1) ◽  
pp. 96-107 ◽  
Author(s):  
Jane P. Fife ◽  
Richard C. Derksen ◽  
H. Erdal Ozkan ◽  
Parwinder S. Grewal ◽  
Jeffrey J. Chalmers ◽  
...  

2021 ◽  
Author(s):  
Gema Trigos-Peral ◽  
Orsolya Juhász ◽  
Péter János Kiss ◽  
Gábor Módra ◽  
Anna Tenyér ◽  
...  

Abstract Climate change is one of the major threats to biodiversity, but its impact varies among the species. Bark beetles (Ips spp.), as well as other wood-boring pests of European forests, show escalating numbers in response to the changes driven by climate change and seriously affect the survival of the forests through the massive killing of trees. Many methods were developed to control these wood-boring beetles, however, their implementation can be detrimental for other forest specialists. Ants are widely used for biological pest-control, so in our study, we aimed to test the effect of F. polyctena on the control of the wood-boring beetles. The results show that the proportion of infested trees is significantly reduced by the increase of the number of F. polyctena nests, with a strong effect on Ips species. We also show that the boring beetle community is shaped by different biotic and abiotic factors, including the presence of F. polyctena nests. However, the boring beetle infestation was not related to the latitude, altitude and age of the forests. Based on our results, we assert the effectiveness of the red wood ants as biological pest control and the importance of their conservation to keep the health of the forests.


Sign in / Sign up

Export Citation Format

Share Document