Integrated pest management and biological pest control strategies in mango cultivation

Author(s):  
Stefano De Faveri ◽  
Author(s):  
A. A. Oso ◽  
G. O. Awe

Aim: Information on the influence of water availability during different seasons of rainfed or irrigated agriculture as it relates to insect pest population build-up in crops could assist in the development of integrated pest management. A study was therefore conducted to investigate effects of spacing, pest infestation and control on cucumber under rainfed and irrigated conditions. Place and Duration of Study: At the Teaching and Research Farm, Ekiti State University, Ado Ekiti, Nigeria during the 2016/2017 rainy and dry seasons. Methodology: The experiment was laid out using randomized complete block design (RCBD) in a split-plot arrangement in five replications, with spacing (60 x 60 cm, 60 x 90 cm and 60 x 120 cm) as the main plot treatments and the sub-plot treatments were different pest control strategies. The pest control strategies include synthetic insecticide (Lambda-cyhalothrin), botanical insecticide (Anogeissus leiocarpus) and control. Growth parameters and yield attributes were recorded. Insect pest occurrence, their build-up and percentage infestation on cucumber and the efficacy of the management strategies were monitored. Results: The results showed that yield was enhanced in irrigated system with the widest spacing of 60 x 120 cm botanical treatment interaction. Bemisia tabaci was the most prominent insect pest attacking cucumber under irrigated system. Conclusion: Other cultural control practices such as the use of trap crops with little or no financial implication should also be added to botanical pesticides as an integrated pest management tactic for effective management and control of the pest.


1978 ◽  
pp. 215-234
Author(s):  
William Olkowski ◽  
Helga Olkowski ◽  
T. Drlik ◽  
N. Heidler ◽  
M. Minter ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Changtong Li ◽  
Sanyi Tang ◽  
Robert A. Cheke

Abstract An expectation for optimal integrated pest management is that the instantaneous numbers of natural enemies released should depend on the densities of both pest and natural enemy in the field. For this, a generalised predator–prey model with nonlinear impulsive control tactics is proposed and its dynamics is investigated. The threshold conditions for the global stability of the pest-free periodic solution are obtained based on the Floquet theorem and analytic methods. Also, the sufficient conditions for permanence are given. Additionally, the problem of finding a nontrivial periodic solution is confirmed by showing the existence of a nontrivial fixed point of the model’s stroboscopic map determined by a time snapshot equal to the common impulsive period. In order to address the effects of nonlinear pulse control on the dynamics and success of pest control, a predator–prey model incorporating the Holling type II functional response function as an example is investigated. Finally, numerical simulations show that the proposed model has very complex dynamical behaviour, including period-doubling bifurcation, chaotic solutions, chaos crisis, period-halving bifurcations and periodic windows. Moreover, there exists an interesting phenomenon whereby period-doubling bifurcation and period-halving bifurcation always coexist when nonlinear impulsive controls are adopted, which makes the dynamical behaviour of the model more complicated, resulting in difficulties when designing successful pest control strategies.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 74
Author(s):  
Xiao-wei Li ◽  
Xin-xin Lu ◽  
Zhi-jun Zhang ◽  
Jun Huang ◽  
Jin-ming Zhang ◽  
...  

Intercropping of aromatic plants provides an environmentally benign route to reducing pest damage in agroecosystems. However, the effect of intercropping on natural enemies, another element which may be vital to the success of an integrated pest management approach, varies in different intercropping systems. Rosemary, Rosmarinus officinalis L. (Lamiaceae), has been reported to be repellent to many insect species. In this study, the impact of sweet pepper/rosemary intercropping on pest population suppression was evaluated under greenhouse conditions and the effect of rosemary intercropping on natural enemy population dynamics was investigated. The results showed that intercropping rosemary with sweet pepper significantly reduced the population densities of three major pest species on sweet pepper, Frankliniella intonsa, Myzus persicae, and Bemisia tabaci, but did not affect the population densities of their natural enemies, the predatory bug, Orius sauteri, or parasitoid, Encarsia formosa. Significant pest population suppression with no adverse effect on released natural enemy populations in the sweet pepper/rosemary intercropping system suggests this could be an approach for integrated pest management of greenhouse-cultivated sweet pepper. Our results highlight the potential of the integration of alternative pest control strategies to optimize sustainable pest control.


Weed Science ◽  
1982 ◽  
Vol 30 (S1) ◽  
pp. 48-53 ◽  
Author(s):  
B. D. Blair ◽  
J. V. Parochetti

A considerable amount of scientific time has been spent defining Integrated Pest Management (IPM). The following is quoted from an Extension Committee on Organization and Policy publication (4): “Integrated Pest Management (IPM) is a system that utilizes all suitable pest control techniques and methods to keep pest populations below economically injurious levels. Each pest control technique must be environmentally sound and compatible with production and user objectives. Integrated Pest Management is more than chemical pesticide management. In many cases it includes biological, cultural, and sanitary control practices for all pest complexes.”


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 82
Author(s):  
Andrew G. S. Cuthbertson

Invertebrate pest control within both agricultural and horticultural production systems continues to present many challenges. Over the past decades the commonly used method for pest control has been the direct application of chemical products. However, in response to environmental, economic, and other problems associated with the over-reliance on chemical insecticides there has been an increasing drive towards the development of Integrated Pest Management (IPM) approaches. Many IPM strategies are now well developed under protected environments. However, within the open field in many situations targeted success is yet to be achieved. This special issue will seek to showcase original articles and reviews by leading research entomologists and associated experts. Articles presented will focus on the development and implementation of IPM strategies against various major arable and horticultural invertebrate pests (both indigenous and invasive species).


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Marat Rafikov ◽  
Alfredo Del Sole Lordelo ◽  
Elvira Rafikova

We propose an impulsive biological pest control of the sugarcane borer (Diatraea saccharalis) by its egg parasitoidTrichogramma galloibased on a mathematical model in which the sugarcane borer is represented by the egg and larval stages, and the parasitoid is considered in terms of the parasitized eggs. By using the Floquet theory and the small amplitude perturbation method, we show that there exists a globally asymptotically stable pest-eradication periodic solution when some conditions hold. The numerical simulations show that the impulsive release of parasitoids provides reliable strategies of the biological pest control of the sugarcane borer.


2020 ◽  
Vol 4 ◽  
Author(s):  
Randa Jabbour ◽  
Shiri Noy

Pest management strategies involve a complex set of considerations, circumstances, and decision-making. Existing research suggests that farmers are reflexive and reflective in their management choices yet continue to employ curative rather than preventative strategies, and opt for chemical over biological solutions. In this piece, we detail work from a two-year, multidisciplinary, mixed-methods study of insect pest management strategies in alfalfa in Wyoming, integrating data from four focus groups, a statewide survey, and biological sampling of production fields. We outline how these different sources of data together contribute to a more complete understanding of the challenges and strategies employed by farmers, and specifically on biological pest control. We applied this approach across alfalfa hay and seed crop systems. Relatively few farmers acknowledged biological control in focus groups or surveys, yet biological exploration yielded abundant parasitism of common pest alfalfa weevil. On the other hand, parasitism of seed alfalfa pest Lygus was far less common and patchy across fields. It is only in integrating quantitative and qualitative, biological and social data that we are able to generate a more complete portrait of the challenges and opportunities of working with farmers to embrace a preventative paradigm. In doing so, we offer insights on possible barriers to the adoption of preventative insect management strategies and provide a case study of integrating social science and biophysical techniques to better understand opportunities to expand biological pest control in cropping systems.


Sign in / Sign up

Export Citation Format

Share Document