wood ants
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 47)

H-INDEX

29
(FIVE YEARS 2)

Sociobiology ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. e7286
Author(s):  
Adam Véle ◽  
Jovan Dobrosavljević

Red wood ants (the Formica rufa group) are important predators which affect animal communities in their territory. Therefore, they are useful in forest protection. On the other hand, they also prey on beneficial organisms. We have asked whether Formica rufa L. affects the abundance of the parasitic flies Ernestia rudis (Fallén). Ten anthills situated in about 40-year- old pine plantations were used for the study. The presence of E. rudis cocoons was assessed in eight soil samples excavated in the surrounding of each nest at a distance of 2–17 m. Our results show a considerably lower abundance of E. rudis only to 4.5 m from the nests. The occurrence of Formica rufa ants therefore had no significant effect on the beneficial E. rudis population in plantation forests, where ants populations are low.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gema Trigos-Peral ◽  
Orsolya Juhász ◽  
Péter János Kiss ◽  
Gábor Módra ◽  
Anna Tenyér ◽  
...  

AbstractClimate change is one of the major threats to biodiversity, but its impact varies among the species. Bark beetles (Ips spp.), as well as other wood-boring pests of European forests, show escalating numbers in response to the changes driven by climate change and seriously affect the survival of the forests through the massive killing of trees. Many methods were developed to control these wood-boring beetles, however, their implementation can be detrimental for other forest specialists. Ants are widely used for biological pest-control, so in our study, we aimed to test the effect of Formica polyctena on the control of the wood-boring beetles. The results show that the proportion of infested trees is significantly reduced by the increase of the number of F. polyctena nests, with a strong effect on those infested by Ips species. We also show that the boring beetle community is shaped by different biotic and abiotic factors, including the presence of F. polyctena nests. However, the boring beetle infestation was not related to the latitude, altitude and age of the forests. Based on our results, we assert the effectiveness of the red wood ants as biological pest control and the importance of their conservation to keep the health of the forests.


2021 ◽  
Vol 75 (9) ◽  
Author(s):  
Ashley Y. Kim ◽  
David T. Rankin ◽  
Erin E. Wilson Rankin

Abstract Hummingbirds utilize visual cues to locate flowers, but little is known about the role olfaction plays in nectar foraging despite observations that hummingbirds avoid resources occupied by certain insects. We investigated the behavioral responses of both wild and captive hummingbirds to olfactory cues of hymenopteran floral visitors, including native wood ants (Formica francoeuri), invasive Argentine ants (Linepithema humile), and European honeybees (Apis mellifera). We demonstrate for the first time that hummingbirds use olfaction to make foraging decisions when presented with insect-derived chemical cues under field and aviary conditions. Both wild and captive hummingbirds avoided foraging on feeders with defensive chemicals of F. francoeuri and aggregation pheromones of L. humile, but showed no response to honeybee cuticular hydrocarbons. Our experiments demonstrate the importance of olfaction in shaping hummingbird foraging decisions. Significance statement Recent reviews reveal that avian olfaction is not just limited to vultures and a few taxa. We demonstrate that a very charismatic group, hummingbirds, avoid defensive and aggregatory chemical cues from insects present at nectar resources. Olfactory cues can provide critical information about the presence and potential threat of insect floral visitors. This study raises new questions about the underrated importance of olfaction in avian foraging and specifically, hummingbird foraging.


2021 ◽  
Vol 85 ◽  
pp. 135-159
Author(s):  
Vera Antonova ◽  
Martin P. Marinov

The only National Inventory of red wood ants in Bulgaria was carried out about 50 years ago (1970–1973). Formica rufa Linnaeus, 1761, F. pratensis Retzius, 1783, F. lugubris Zetterstedt, 1838 and F. polyctena (as F. polyctena x rufa hybrid) were found in a current monitoring programme. This study presents data on their current distribution and nest density, and provides more details about the habitat requirements for conservation purposes. Field studies were carried out by the transect method along the main mountainous areas in Bulgaria. We found 256 nests of red wood ants along 172 transects. The most abundant species was F. lugubris, followed by F. rufa and F. pratensis. Among the environmental variables, the elevation, exposure, ecological groups of plants, stone cover, grass cover, canopy cover and forest age appeared as significantly related to the presence and nest density of red wood ants.


Author(s):  
Joseph L. Woodgate ◽  
Craig Perl ◽  
Thomas S. Collett

The prevailing account of visually controlled routes is that an ant learns views as it follows a route, while guided by other path-setting mechanisms. Once a set of route views is memorised, the insect follows the route by turning and moving forwards when the view on the retina matches a stored view. We engineered a situation in which this account cannot suffice in order to discover whether there may be additional components to the performance of routes. One-eyed wood ants were trained to navigate a short route in the laboratory, guided by a single black, vertical bar placed in the blinded visual field. Ants thus had to turn away from the route to see the bar. They often turned to look at or beyond the bar and then turned to face in the direction of the goal. Tests in which the bar was shifted to be more peripheral or more frontal than in training produced a corresponding directional change in the ants' paths, demonstrating that they were guided by the bar. Examination of the endpoints of turns towards and away from the bar indicate that ants use the bar for guidance by learning how large a turn-back is needed to face the goal. We suggest that the ants' zigzag paths are in part controlled by turns of a learnt amplitude and that these turns are an integral part of visually guided route following.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
T. Parmentier ◽  
R. Claus ◽  
F. De Laender ◽  
D. Bonte

Abstract Background Species interactions may affect spatial dynamics when the movement of one species is determined by the presence of another one. The most direct species-dependence of dispersal is vectored, usually cross-kingdom, movement of immobile parasites, diseases or seeds by mobile animals. Joint movements of species should, however, not be vectored by definition, as even mobile species are predicted to move together when they are tightly connected in symbiont communities. Methods We studied concerted movements in a diverse and heterogeneous community of arthropods (myrmecophiles) associated with red wood ants. We questioned whether joint-movement strategies eventually determine and speed-up community succession. Results We recorded an astonishingly high number of obligate myrmecophiles outside red wood ant nests. They preferentially co-moved with the host ants as the highest densities were found in locations with the highest density of foraging red wood ants, such as along the network of ant trails. These observations suggest that myrmecophiles resort to the host to move away from the nest, and this to a much higher extent than hitherto anticipated. Interestingly, functional groups of symbionts displayed different dispersal kernels, with predatory myrmecophiles moving more frequently and further from the nest than detritivorous myrmecophiles. We discovered that myrmecophile diversity was lower in newly founded nests than in mature red wood ant nests. Most myrmecophiles, however, were able to colonize new nests fast suggesting that the heterogeneity in mobility does not affect community assembly. Conclusions We show that co-movement is not restricted to tight parasitic, or cross-kingdom interactions. Movement in social insect symbiont communities may be heterogeneous and functional group-dependent, but clearly affected by host movement. Ultimately, this co-movement leads to directional movement and allows a fast colonisation of new patches, but not in a predictable way. This study highlights the importance of spatial dynamics of local and regional networks in symbiont metacommunities, of which those of symbionts of social insects are prime examples.


2021 ◽  
Vol 110 ◽  
pp. 103709
Author(s):  
I.E. Maák ◽  
I. Sondej ◽  
O. Juhász ◽  
G. Trigos-Peral ◽  
A. Tenyér ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document