Chironomid midges (Diptera) provide insights into genome evolution in extreme environments

Author(s):  
Nurislam Shaikhutdinov ◽  
Oleg Gusev
2022 ◽  
Vol 12 ◽  
Author(s):  
Yanting Hu ◽  
Xiaopei Wu ◽  
Guihua Jin ◽  
Junchu Peng ◽  
Rong Leng ◽  
...  

Retrotransposons are the most abundant group of transposable elements (TEs) in plants, providing an extraordinarily versatile source of genetic variation. Thlaspi arvense, a close relative of the model plant Arabidopsis thaliana with worldwide distribution, thrives from sea level to above 4,000 m elevation in the Qinghai-Tibet Plateau (QTP), China. Its strong adaptability renders it an ideal model system for studying plant adaptation in extreme environments. However, how the retrotransposons affect the T. arvense genome evolution and adaptation is largely unknown. We report a high-quality chromosome-scale genome assembly of T. arvense with a scaffold N50 of 59.10 Mb. Long terminal repeat retrotransposons (LTR-RTs) account for 56.94% of the genome assembly, and the Gypsy superfamily is the most abundant TEs. The amplification of LTR-RTs in the last six million years primarily contributed to the genome size expansion in T. arvense. We identified 351 retrogenes and 303 genes flanked by LTRs, respectively. A comparative analysis showed that orthogroups containing those retrogenes and genes flanked by LTRs have a higher percentage of significantly expanded orthogroups (SEOs), and these SEOs possess more recent tandem duplicated genes. All present results indicate that RNA-based gene duplication (retroduplication) accelerated the subsequent tandem duplication of homologous genes resulting in family expansions, and these expanded gene families were implicated in plant growth, development, and stress responses, which were one of the pivotal factors for T. arvense’s adaptation to the harsh environment in the QTP regions. In conclusion, the high-quality assembly of the T. arvense genome provides insights into the retroduplication mediated mechanism of plant adaptation to extreme environments.


2020 ◽  
Author(s):  
Zhenhua Yang ◽  
Hong Li ◽  
Yun Jia ◽  
Yan Zheng ◽  
Hu Meng ◽  
...  

Abstract Background K-mer spectra of DNA sequences contain important information about sequence composition and sequence evolution. We want to reveal the evolution rules of genome sequences by studying the k-mer spectra of genome sequences. Results The intrinsic laws of k-mer spectra of 920 genome sequences from primate to prokaryote were analyzed. We found that there are two types of evolution selection modes in genome sequences, named as CG Independent Selection and TA Independent Selection. There is a mutual inhibition relationship between CG and TA independent selections. We found that the intensity of CG and TA independent selections correlates closely with genome evolution and G+C content of genome sequences. The living habits of species are related closely to the independent selection modes adopted by species genomes. Consequently, we proposed an evolution mechanism of genomes in which the genome evolution is determined by the intensities of the CG and TA independent selections and the mutual inhibition relationship. Besides, by the evolution mechanism of genomes, we speculated the evolution modes of prokaryotes in mild and extreme environments in the anaerobic age and the evolving process of prokaryotes from anaerobic to aerobic environment on earth as well as the originations of different eukaryotes. Conclusion We found that there are two independent selection modes in genome sequences. The evolution of genome sequence is determined by the two independent selection modes and the mutual inhibition relationship between them.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenhua Yang ◽  
Hong Li ◽  
Yun Jia ◽  
Yan Zheng ◽  
Hu Meng ◽  
...  

Abstract Background K-mer spectra of DNA sequences contain important information about sequence composition and sequence evolution. We want to reveal the evolution rules of genome sequences by studying the k-mer spectra of genome sequences. Results The intrinsic laws of k-mer spectra of 920 genome sequences from primate to prokaryote were analyzed. We found that there are two types of evolution selection modes in genome sequences, named as CG Independent Selection and TA Independent Selection. There is a mutual inhibition relationship between CG and TA independent selections. We found that the intensity of CG and TA independent selections correlates closely with genome evolution and G + C content of genome sequences. The living habits of species are related closely to the independent selection modes adopted by species genomes. Consequently, we proposed an evolution mechanism of genomes in which the genome evolution is determined by the intensities of the CG and TA independent selections and the mutual inhibition relationship. Besides, by the evolution mechanism of genomes, we speculated the evolution modes of prokaryotes in mild and extreme environments in the anaerobic age and the evolving process of prokaryotes from anaerobic to aerobic environment on earth as well as the originations of different eukaryotes. Conclusion We found that there are two independent selection modes in genome sequences. The evolution of genome sequence is determined by the two independent selection modes and the mutual inhibition relationship between them.


2020 ◽  
Author(s):  
Yang Zhenhua ◽  
Hong Li ◽  
Jia Yun ◽  
Zheng Yan ◽  
Meng Hu ◽  
...  

Abstract Background K-mer spectra of DNA sequences contain important information about sequence composition and sequence evolution. We want to reveal the evolution rules of genome sequences by studying the k-mer spectra of genome sequences. Results The intrinsic laws of k-mer spectra of 920 genome sequences from primate to prokaryote were analyzed. We found that there are two types of evolution selection modes in genome sequences, named as CG Independent Selection and TA Independent Selection. There is a mutual inhibition relationship between CG and TA independent selections. We found that the intensity of CG and TA independent selections correlates closely with genome evolution and G+C content of genome sequences. The living habits of species are related closely to the independent selection modes adopted by species genomes. Consequently, we proposed an evolution mechanism of genomes in which the genome evolution is determined by the intensities of the CG and TA independent selections and the mutual inhibition relationship. Besides, by the evolution mechanism of genomes, we speculated the evolution modes of prokaryotes in mild and extreme environments in the anaerobic age and the evolving process of prokaryotes from anaerobic to aerobic environment on earth as well as the originations of different eukaryotes. Conclusion We found that there are two independent selection modes in genome sequences. The evolution of genome sequence is determined by the two independent selection modes and the mutual inhibition relationship between them.


2016 ◽  
Vol 70 (11) ◽  
pp. 1151-1153
Author(s):  
Goro Kimura ◽  
Toshihiro Kusama ◽  
Junichi Enokida
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document