Microstructure and transitions in mixed micelles of cetyltrimethylammonium tosylate and bile salts

Author(s):  
S. Chavda ◽  
D. Danino ◽  
V.K. Aswal ◽  
K. Singh ◽  
D.G. Marangoni ◽  
...  
1979 ◽  
Vol 236 (1) ◽  
pp. E10
Author(s):  
S Binet ◽  
Y Delage ◽  
S Erlinger

To test the hypothesis that incorporation of sulfobromophthalein (BSP) into mixed micelles could account for the increase in its biliary transport maximum (Tmax) by bile salts, we have compared in hamsters the influence on BSP Tmax of taurocholate and taurochenodeoxycholate (two micelle-forming physiological bile salts) to that of taurodehydrocholate, a bile salt which, in vitro, does not form micelles. In a first series of experiments, it was observed that taurocholate and taurochenodeoxycholate increased the secretion of phospholipid (40 and 53%, respectively), and cholesterol (50 and 110%, respectively), whereas taurodehydrocholate decreased the secretion of phospholipid (-31%) and cholesterol (-43%). This result suggests that, in vivo, taurodehydrocholate or its metabolites do not form mixed micelles. In a second series of experiments, it was seen that the three bile salts induced a similar increase in BSP Tmax (63% with taurocholate, 52% with taurochenodeoxycholate, and 51% with taurodehydrocholate). These results provide circumstantial evidence for the hypothesis that mixed micelle formation is not an important determinant of maximal BSP secretion into bile.


Lipids ◽  
1984 ◽  
Vol 19 (7) ◽  
pp. 553-557 ◽  
Author(s):  
M. Lake ◽  
D. T. Organisciak
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5764
Author(s):  
Natalia Łozińska ◽  
Christian Jungnickel

We aim to advance the discussion on the significance of the conjugation of bile salts (BS) in our organism. We hypothesize that conjugation influences the rate of lipolysis. Since the rate of lipolysis is a compound parameter, we compare the effect of conjugation on four surface parameters, which contribute to the rate. Since deconjugation is due to gut microbiota, we hypothesize that microbiota may affect the rate of lipolysis. A meta-analysis of literature data of critical micelle concentration, β, aggregation number, and molar solubilization ratio has been performed for the first time. In addition, critical micelle concentration (CMC), interfacial tension, and lipolysis rate measurements were performed. It was found that the unconjugated BS in mixed micelles increases the antagonism between the BS, therefore, increasing the CMC. This correlated with the effect of unconjugated BS on the solubilization capacity of mixed micelles. The collected literature information indicates that the role of the BS and its conjugation in our organism is a key factor influencing the functioning of our organism, where too high levels of unconjugated BS may lead to malabsorption of fat-soluble nutrients. The experimental lipolysis results irrevocably showed that conjugation is a significant factor influencing the rate.


Sign in / Sign up

Export Citation Format

Share Document