Novel dicationic pyrimidine-based nucleolipid bearing piperidine head groups: Synthesis, aggregation behavior, solubilization capacity and interaction with DNA decamer

Author(s):  
Dinar R. Gabdrakhmanov ◽  
Darya A. Kuznetsova ◽  
Liliya F. Saifina ◽  
Marina M. Shulaeva ◽  
Vyacheslav E. Semenov ◽  
...  
Author(s):  
L. J. Fetters ◽  
J. S. Huang ◽  
J. Sung ◽  
L. Willner ◽  
J. Stellbrink ◽  
...  

Author(s):  
Ziyafaddin H. Asadov ◽  
Gulnara A. Ahmadova ◽  
Ravan A. Rahimov ◽  
Seyid-Zeynab F. Hashimzade ◽  
Shafiga M. Nasibova ◽  
...  

2019 ◽  
Vol 534 ◽  
pp. 430-439 ◽  
Author(s):  
Leonardo Chiappisi ◽  
Uwe Keiderling ◽  
Carlos E. Gutierrez-Ulloa ◽  
Rafael Gómez ◽  
Mercedes Valiente ◽  
...  

Author(s):  
Vitthal S. Kulkarni ◽  
Wayne H. Anderson ◽  
Rhoderick E. Brown

The biological significance of the sphingomyelins (SM) and monoglycosylated sphingolipids like galactosylceramides (GalCer) are well documented Our recent investigation showed tubular bilayers in the aqueous dispersions of N-nervonoyl GalCer [N-(24:lΔ15,cls) GalCer] (a major fatty acyl moiety of natural GalCer). To determine the influence of lipid head groups on the resulting mesophasic morphology, we investigated microstructural self-assemblies of N-nervonoyl-SM [N-(24:1 Δ15,cls) SM; the second most abundant sphingomyelin in mammalian cell membranes], 1- palmitoyl-2-nervonoyl phosphatidylcholine [PNPC] (the lipid species with the same acyl chain configuration as in N-(24: 1) GalCer) and also compared it with egg-SM by freeze-fracture EM.Procedures for synthesizing and purifying N-(24:1) GalCer, N-(24:1) SM, and PNPC have been reported . Egg-SM was purchased from Avanti Polar Lipids, Alabaster AL. All lipids were >99% pure as checked by thin layer chromatography. Lipid dispersions were prepared by hydrating dry lipid with phosphate buffer (pH 6.6) at 80-90°C (3-5 min), vigorously vortexing (1 min) and repeating this procedure for three times prior to three freeze-thaw cycles.


2020 ◽  
Author(s):  
Zahari Vinarov ◽  
Gabriela Gancheva ◽  
Nikola Burdzhiev ◽  
Slavka S. Tcholakova

Although surfactants are frequently used in enabling formulations of poorly water-soluble drugs, the link between their structure and drug solubilization capacity is still unclear. We studied the solubilization of the “brick-dust” molecule itraconazole by 16 surfactants and 3 phospholipid:surfactant mixtures. NMR spectroscopy was used to study in more details the drug-surfactant interactions. Very high solubility of itraconazole (up to 3.6 g/L) was measured in anionic surfactant micelles at pH = 3, due to electrostatic attraction between the oppositely charged (at this pH) drug and surfactant molecules. <sup>1</sup>H NMR spectroscopy showed that itraconazole is ionized at two sites (2+ charge) at these conditions: in the phenoxy-linked piperazine nitrogen and in the dioxolane-linked triazole ring. The increase of amphiphile hydrophobic chain length had a markedly different effect, depending on the amphiphile type: the solubilization capacity of single-chain surfactants increased, whereas a decrease was observed for double-chained surfactants (phosphatidylglycerols). The excellent correlation between the chain melting temperatures of phosphatidylglycerols and itraconazole solubilization illustrated the importance of hydrophobic chain mobility. This study provides rules for selection of itraconazole solubilizers among classical single-chain surfactants and phospholipids. The basic physics underpinning the described effects suggests that these rules should be transferrable to other “brick-dust” molecules.


2018 ◽  
Author(s):  
Luke Jordan ◽  
Nathan Wittenberg

This is a comprehensive study of the effects of the four major brain gangliosides (GM1, GD1b, GD1a, and GT1b) on the adsorption and rupture of phospholipid vesicles on SiO2 surfaces for the formation of supported lipid bilayer (SLB) membranes. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we show that gangliosides GD1a and GT1b significantly slow the SLB formation process, whereas GM1 and GD1b have smaller effects. This is likely due to the net ganglioside charge as well as the positions of acidic sugar groups on ganglioside glycan head groups. Data is included that shows calcium can accelerate the formation of ganglioside-rich SLBs. Using fluorescence recovery after photobleaching (FRAP) we also show that the presence of gangliosides significantly reduces lipid diffusion coefficients in SLBs in a concentration-dependent manner. Finally, using QCM-D and GD1a-rich SLB membranes we measure the binding kinetics of an anti-GD1a antibody that has similarities to a monoclonal antibody that is a hallmark of a variant of Guillain-Barre syndrome.


2020 ◽  
Vol 57 (3) ◽  
pp. 192-202 ◽  
Author(s):  
Akash D. Patel ◽  
Meghal A. Desai

2018 ◽  
Vol 1 (11(56)) ◽  
pp. 62-64
Author(s):  
A.A. Muravev ◽  
E.A. Ivanova ◽  
A.T. Yakupov

In this work, aggregation behavior of azacrown-ether derivatives on a macrocyclic calix[4]arene scaffold within ultrathin Langmuir films on water subphase is considered.


Sign in / Sign up

Export Citation Format

Share Document