Environmentally friendly and salt-responsive polymer brush based on lignin nanoparticle as fluid-loss additive in water-based drilling fluids

Author(s):  
Jinsheng Sun ◽  
Xiaofeng Chang ◽  
Kaihe Lv ◽  
Jintang Wang ◽  
Fan Zhang ◽  
...  
2017 ◽  
Vol 31 (11) ◽  
pp. 11963-11970 ◽  
Author(s):  
Jie Cao ◽  
Lingwei Meng ◽  
Yuping Yang ◽  
Yuejun Zhu ◽  
Xiaoqiang Wang ◽  
...  

2015 ◽  
Vol 7 (44) ◽  
pp. 24799-24809 ◽  
Author(s):  
Mei-Chun Li ◽  
Qinglin Wu ◽  
Kunlin Song ◽  
Sunyoung Lee ◽  
Chunde Jin ◽  
...  

2016 ◽  
Vol 30 (9) ◽  
pp. 7221-7228 ◽  
Author(s):  
Fan Liu ◽  
Guancheng Jiang ◽  
Shuanglei Peng ◽  
Yinbo He ◽  
Jinxi Wang

2021 ◽  
Author(s):  
Xinliang Li ◽  
Kai Wang

Abstract During the oil and gas drilling engineering, the selection of drilling fluids must take account of the technical and environmental factors. This study investigated the effectiveness of carboxylated cellulose nanocrystals (denoted as CNCs) as environmentally friendly additives in improving the rheological, filtration, and inhibitive performances of bentonite (BT) water-based drilling fluids (WBDFs). CNCs used in this study were modified by carboxylation reaction, displaying small size, negative surface charge, good colloidal stability, and prominent shear thinning behavior. The experimental results indicated that BT/CNC suspensions had superior rheological properties, low fluid loss volumes, and effective inhibition, even at 140 °C. Microstructure analysis demonstrated that CNCs could attach to the surface of BT via hydrogen bond and ionic bond. CNCs, BT, and vicinal water molecules could form a stiff gel network, which had a strong resistance to flow under shear force, leading to a significant improvement in the rheological properties. Moreover, under the differential pressure, BT/CNC suspensions formed thin and less hydrophilic filter cakes with compact layered structure, thereby efficiently decreasing the fluid loss volume. Finally, due to the gel network and filtration ability, BT/CNC suspensions performed low water activity, which was beneficial for preventing the penetration of free water into the shales and borehole well. Thus CNCs also exerted satisfactory inhibition on hydration and dispersion of BT and shales. As a result, CNCs showed great potential to be used as efficient, multi-functional, and environmentally friendly additives in WBDFs.


Sign in / Sign up

Export Citation Format

Share Document