scholarly journals Surfactant properties of chemically modified chitooligosaccharides and their potential application in bitumen emulsions

Author(s):  
Camille Chapelle ◽  
Ghislain David ◽  
Sylvain Caillol ◽  
Claire Negrell ◽  
Sylvain Catrouillet ◽  
...  
1998 ◽  
Vol 12 (1) ◽  
pp. 97-102 ◽  
Author(s):  
B.L. Lokeshwar ◽  
H.L. Houston-Clark ◽  
M.G. Selzer ◽  
N.L. Block ◽  
L.M. Golub

Author(s):  
A. Reid ◽  
F. Buchanan ◽  
M. Julius ◽  
P. J. Walsh

 Diatoms are unicellular eukaryotic algae that have a distinctive siliceous cell wall (frustule) with unique architectures. These frustules are a naturally derived biomaterial, which can be chemically modified and may have potential in bone tissue engineering applications.


2009 ◽  
Vol 00 (00) ◽  
pp. 090513010017019-7
Author(s):  
Biagio Solarino ◽  
Giancarlo Di Vella ◽  
Thea Magrone ◽  
Felicita Jirillo ◽  
Angela Tafaro ◽  
...  

1989 ◽  
Vol 61 (01) ◽  
pp. 131-136 ◽  
Author(s):  
Richard A Harvey ◽  
Hugh C Kim ◽  
Jonathan Pincus ◽  
Stanley Z Trooskin ◽  
Josiah N Wilcox ◽  
...  

SummaryTissue plasminogen activator labeled with radioactive iodine (125I-tPA) was immobilized on vascular prostheses chemically modified with a thin coating of water-insoluble surfactant, tridodecylmethylammonium chloride (TDM AC). Surfactant- treated Dacron, polytetrafluoroethylene (PTFE), silastic, polyethylene and polyurethane bound appreciable amounts of 125I- tPA (5-30 μg 125I-tPA/cm2). Upon exposure to human plasma, the amount of 125I-tPA bound to the surface shows an initial drop during the first hour of incubation, followed by a slower, roughly exponential release with a t½ of appoximately 75 hours. Prostheses containing bound tPA show fibrinolytic activity as measured both by lysis of clots formed in vitro, and by hydrolysis of a synthetic polypeptide substrate. Prior to incubation in plasma, tPA bound to a polymer surface has an enzymic activity similar, if not identical to that of the native enzyme in buffered solution. However, exposure to plasma causes a decrease in the fibrinolytic activity of both bound tPA and enzyme released from the surface of the polymer. These data demonstrate that surfactant-treated prostheses can bind tPA, and that these chemically modified devices can act as a slow-release drug delivery system with the potential for reducing prosthesis-induced thromboembolism.


1966 ◽  
Vol 15 (01/02) ◽  
pp. 252-272
Author(s):  
K. M Moser ◽  
Mary Belle Frey

Summary1. Caseinolytic and fibrinolytic systems for assay of plasmin in fibrinolytic agents are described which are based upon the determinations of AE/min during the linear portion of the casein-plasmin and fibrin-plasmin reaction curves respectively. A " caseinolytic-rate " unit and “fibrinolytic-rate " unit of ÄE/min × 103 during the linear portion of the respective curves are proposed.2. Data are presented indicating that a reliably linear relationship exists between plasmin concentration and these caseinolytic - and fibrinolytic-rate units.3. Data comparing results obtained with the proposed assay techniques and previously-used casein and fibrinolytic techniques are presented.4. Formulae by which caseinolytic-rate and fibrinolytic-rate units can be roughly converted into Remmert-Cohen type plasmin units are offered.5. The theoretical and practical problems which have influenced development of assays for fibrinolytic components are discussed.6. The advantages of the plasmin “rate unit” techniques vis a vis existing assays are delineated.7. The potential application of the techniques to measurements other than the plasmin content of fibrinolytic agents is discussed.


Sign in / Sign up

Export Citation Format

Share Document