Interaction of graphene oxide with artificial cell membranes: Role of anionic phospholipid and cholesterol in nanoparticle attachment and membrane disruption

2021 ◽  
Vol 202 ◽  
pp. 111685
Author(s):  
Yiping Feng ◽  
Yijian Zhang ◽  
Guoguang Liu ◽  
Xitong Liu ◽  
Shixiang Gao
Soft Matter ◽  
2021 ◽  
Vol 17 (39) ◽  
pp. 8891-8901
Author(s):  
Jaime L. Korner ◽  
Katherine S. Elvira

A systematic study of the role of temperature in human–mimetic droplet interface bilayer (DIB) formation.


2013 ◽  
Vol 103 (7) ◽  
pp. 073305 ◽  
Author(s):  
Xiao-Chen Jiang ◽  
Yan-Qing Li ◽  
Yan-Hong Deng ◽  
Qi-Qi Zhuo ◽  
Shuit-Tong Lee ◽  
...  

2021 ◽  
pp. 117996
Author(s):  
Barbara Flasz ◽  
Marta Dziewięcka ◽  
Andrzej Kędziorski ◽  
Monika Tarnawska ◽  
Jan Augustyniak ◽  
...  

1996 ◽  
Vol 270 (1) ◽  
pp. C12-C30 ◽  
Author(s):  
A. S. Verkman ◽  
A. N. van Hoek ◽  
T. Ma ◽  
A. Frigeri ◽  
W. R. Skach ◽  
...  

This review summarizes recent progress in water-transporting mechanisms across cell membranes. Modern biophysical concepts of water transport and new measurement strategies are evaluated. A family of water-transporting proteins (water channels, aquaporins) has been identified, consisting of small hydrophobic proteins expressed widely in epithelial and nonepithelial tissues. The functional properties, genetics, and cellular distributions of these proteins are summarized. The majority of molecular-level information about water-transporting mechanisms comes from studies on CHIP28, a 28-kDa glycoprotein that forms tetramers in membranes; each monomer contains six putative helical domains surrounding a central aqueous pathway and functions independently as a water-selective channel. Only mutations in the vasopressin-sensitive water channel have been shown to cause human disease (non-X-linked congenital nephrogenic diabetes insipidus); the physiological significance of other water channels remains unproven. One mercurial-insensitive water channel has been identified, which has the unique feature of multiple overlapping transcriptional units. Systems for expression of water channel proteins are described, including Xenopus oocytes, mammalian and insect cells, and bacteria. Further work should be directed at elucidation of the role of water channels in normal physiology and disease, molecular analysis of regulatory mechanisms, and water channel structure determination at atomic resolution.


Sign in / Sign up

Export Citation Format

Share Document