Multigenerational selection towards longevity changes the protective role of vitamin C against graphene oxide-induced oxidative stress in house crickets

2021 ◽  
pp. 117996
Author(s):  
Barbara Flasz ◽  
Marta Dziewięcka ◽  
Andrzej Kędziorski ◽  
Monika Tarnawska ◽  
Jan Augustyniak ◽  
...  
2017 ◽  
Vol 104 (2) ◽  
pp. 139-149 ◽  
Author(s):  
M Savran ◽  
E Cicek ◽  
DK Doguc ◽  
H Asci ◽  
S Yesilot ◽  
...  

Like several other anticancer drugs, methotrexate (MTX) causes side effects, such as neuropathic pain, hepatotoxicity, and nephrotoxicity. Abnormal production of reactive oxygen species has been suspected in the pathophysiology of MTX-induced hepatorenal toxicity. Therefore, the aim of this study was to investigate the probable protective role of vitamin C (Vit C) on oxidative stress induced by MTX in the liver and kidney tissues of rats. A total of 32 rats were randomly and equally divided into four groups. The first group served as the control group. The second group received a single dose of 20 mg/kg of MTX intraperitoneally. To demonstrate our hypothesis, the third and the fourth groups received 250 mg/kg of Vit C for 3 days by oral gavage, with or without MTX treatment. At the end of the study, the liver and kidney tissues of the rats were collected and examined using histology. Both the tissues were assayed for malondialdehyde concentration and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities. In hepatic and renal tissues, lipid peroxidation levels were increased, whereas SOD, CAT, and GSH-Px levels were decreased by MTX. All parameters, including CAT levels in hepatic tissue, were significantly restored after the administration of Vit C for 3 days. Similar to the biochemical findings, evidence of oxidative damage was examined in both types of tissues by histopathological examination. From the results of this study, we were able to observe that Vit C administration modulates the antioxidant redox system and reduces the renal and hepatic oxidative stress induced by MTX. Vit C can ameliorate the toxic effect of MTX in liver and kidney tissues of rat.


2011 ◽  
Vol 38 (3) ◽  
pp. 635-643 ◽  
Author(s):  
Ferbal Özkan ◽  
Suna Gül Gündüz ◽  
Mehmet Berköz ◽  
Arzu Özlüer Hunt ◽  
Serap Yalın

2016 ◽  
Vol 8 (1) ◽  
pp. 346-349
Author(s):  
Muneer Ahmad Dar ◽  
Rajinder Raina ◽  
Arshad Hussain Mir ◽  
Pawan Kumar Verma ◽  
Mahrukh Ahmad

The aim of present study was to unravel the protective role of vitamin C on oxidative stress parameters in lung homogenates of bifenthrin intoxicated rats. Rats were divided into four groups. Group I served as control while group II animals were treated with bifenthrin @ 5.8mg/Kg/day. In group III, vitamin C was orally administered @ 60mg/Kg/day where as group IV received both vitamin C and bifenthrin @ 60mg/Kg/day and 5.8mg/Kg/day respectively. After 30th day of treatment, lung samples were taken and analysed for oxidative stress parameters. Significant (P<0.05) increase in lipid peroxidation was observed from control value of 4.80±0.39 to 7.90±0.50 in bifenthrin treated animals. Mean control values of SOD, GSH-Px and CAT were 0.55±0.05, 0.98±0.03 and 138.70±6.01 which were significantly (P<0.05) decreased to values of 0.27±0.0, 0.53±0.05 and 91.10±9.70 respectively in bifenthrin treated animals. The value of GST increased significantly (p<0.05) to 1.05±0.06 in bifenthrin administered animals from control value of 0.70±0.08. Pre-treatment with vitamin C in ameliorative group IV significantly restored the normal values of lipid peroxidation, SOD, GST and CAT but could not reverse the decreased values of GSH-Px. The present research is first of its type where in free radical generation due to bifenthrin –a commonly used insecticide was evaluated in lung homogenates when given orally which might be due to residues present in the lung. Besides it will be helpful in better understanding of toxicological profile of pyrethoids, the most commonly used insecticides.


2016 ◽  
Vol 6 (2) ◽  
pp. 0-0 ◽  
Author(s):  
D. Kumar ◽  
B. Sharma ◽  
SI Rizvi

Purpose: Carbofuran toxicity on rats was studied during sub-acute exposure. This work was undertaken to evaluate the protective effect of aqueous black tea extract and vitamin C against a rat model of oxidative stress induced by treatment with carbofuran, an organocarbamate insecticide. Materials and methods: The levels of lipid peroxidation, reduced glutathione and ascorbic acid were assessed by determining the extent of oxidative stress in the erythrocytes of rats. Results: The results clearly demonstrated that the treatment of rats with sub-acute concentration of carbofuran caused significant elevation in the levels of oxidative stress and decrease in the contents of glutathione and ascorbic acid. The introduction of black tea extract and vitamin C augmented the antioxidant defense mechanism in alleviating the carbofuran induced oxidative stress. Conclusion: The findings that the pretreatment with black tea and vitamin C can mitigate carbofuran induced toxicity lend evidence that supplementation with either black tea extract and/or vitamin C have a therapeutic potential in amelioration of oxidative stress in mammalian systems


2020 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Hanan Yassa ◽  
Gaber Hussein ◽  
Shimaa Kotb ◽  
azza embaby
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document