Study on flame dynamics with secondary fuel injection control by large eddy simulation

2007 ◽  
Vol 150 (4) ◽  
pp. 277-291 ◽  
Author(s):  
J. Shinjo ◽  
S. Matsuyama ◽  
Y. Mizobuchi ◽  
S. Ogawa
Author(s):  
M. Bauerheim ◽  
T. Jaravel ◽  
L. Esclapez ◽  
E. Riber ◽  
L. Y. M. Gicquel ◽  
...  

This paper describes the application of a coupled acoustic model/large-eddy simulation approach to assess the effect of fuel split on combustion instabilities in an industrial ultra-low-NOx annular combustor. Multiphase flow LES and an analytical model (analytical tool to analyze and control azimuthal modes in annular chambers (ATACAMAC)) to predict thermoacoustic modes are combined to reveal and compare two mechanisms leading to thermoacoustic instabilities: (1) a gaseous type in the multipoint zone (MPZ) where acoustics generates vortex shedding, which then wrinkle the flame front, and (2) a multiphase flow type in the pilot zone (PZ) where acoustics can modify the liquid fuel transport and the evaporation process leading to gaseous fuel oscillations. The aim of this paper is to investigate these mechanisms by changing the fuel split (from 5% to 20%, mainly affecting the PZ and mechanism 2) to assess which mechanism controls the flame dynamics. First, the eigenmodes of the annular chamber are investigated using an analytical model validated by 3D Helmholtz simulations. Then, multiphase flow LES are forced at the eigenfrequencies of the chamber for three different fuel split values. Key features of the flow and flame dynamics are investigated. Results show that acoustic forcing generates gaseous fuel oscillations in the PZ, which strongly depend on the fuel split parameter. However, the correlation between acoustics and the global (pilot + multipoint) heat release fluctuations highlights no dependency on the fuel split staging. It suggests that vortex shedding in the MPZ, almost not depending on the fuel split, is the main feature controlling the flame dynamics for this engine.


2011 ◽  
Vol 27 (4) ◽  
pp. 519-530 ◽  
Author(s):  
Lei Zhou ◽  
Mao-Zhao Xie ◽  
Ming Jia ◽  
Jun-Rui Shi

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 122735
Author(s):  
Jiun Cai Ong ◽  
Min Zhang ◽  
Morten Skov Jensen ◽  
Jens Honoré Walther

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Alexander Avdonin ◽  
Alireza Javareshkian ◽  
Wolfgang Polifke

Abstract This paper demonstrates that a large Eddy simulation (LES) combustion model based on tabulated chemistry and Eulerian stochastic fields can successfully describe the flame dynamics of a premixed turbulent swirl flame. The combustion chemistry is tabulated from one-dimensional burner-stabilized flamelet computations in dependence on progress variable and enthalpy. The progress variable allows to efficiently include a detailed reaction scheme, while the dependence on enthalpy describes the effect of heat losses on the reaction rate. The turbulence-chemistry interaction is modeled by eight Eulerian stochastic fields. An LES of a premixed swirl burner with a broadband velocity excitation is performed to investigate the flame dynamics, i.e., the response of heat release rate to upstream velocity perturbations. In particular, the flame impulse response and the flame transfer function (FTF) are identified from LES time series data. Simulation results for a range of power ratings are in good agreement with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document