gaseous fuel
Recently Published Documents


TOTAL DOCUMENTS

409
(FIVE YEARS 57)

H-INDEX

23
(FIVE YEARS 3)

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122232
Author(s):  
Swarup Kumar Nayak ◽  
Anh Tuan Hoang ◽  
Sandro Nižetić ◽  
Xuan Phuong Nguyen ◽  
Tri Hieu Le

Author(s):  
Pali Rosha ◽  
Sandeep Kumar ◽  
Shruti Vikram ◽  
Hussameldin Ibrahim ◽  
Ala'a H. Al-Muhtaseb

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7649
Author(s):  
Tomasz Chrulski ◽  
Mariusz Łaciak

The transmission of natural gas is a key element of the Polish energy system. The published data of the Polish distribution system operators and the transmission system operator on the volume of gaseous fuel transmitted indicate a growing trend in the consumption of energy produced from natural gas. In connection with the energy transformation, switching energy generation sources from hard coal to natural gas in Poland, it is important for transmission operators to know the future demand for gaseous fuel. The aim of the article is to attempt to develop an econometric model related to the consumption of gaseous fuel by Polish entrepreneurs. The knowledge therein may be useful for making business decisions related to the possible expansion of the transmission system, and thus investing financial resources for this purpose. This knowledge will also provide quantitative information related to the interest in gaseous fuel among industrial consumers and the analysis of the trend of natural gas consumption in Poland in the aspect of energy transition. The intention of the publication was to determine the macroeconomic indicators that strongly affect natural gas consumption by the Polish industry and the quantitative growth of consumption depending on changes in these indicators. The results showed that the highest correlation of the growth of natural gas consumption is related to the production of chemistry, the chemical industry, and the power industry.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1253
Author(s):  
Siti Aishah Anuar ◽  
Khairul Naim Ahmad ◽  
Ahmed Al-Amiery ◽  
Mohd Shahbudin Masdar ◽  
Wan Nor Roslam Wan Isahak

The presence of CO2 in gaseous fuel and feedstock stream of chemical reaction was always considered undesirable. High CO2 content will decrease quality and heating value of gaseous fuel, such as biohydrogen, which needs a practical approach to remove it. Thus, this work aims to introduce the first C3N4-metal oxide hybrid for the CO2 cleaning application from a mixture of CO2-H2 gas. The samples were tested for their chemical and physical properties, using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), physical adsorption analysis (BET), fourier-transform infrared (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The CO2 capacity test was carried out by means of a breakthrough test at 1 atm and 25° C using air as a desorption system. Among the samples, amine/metal oxide mass ratio of 2:1 (CNHP500-2(2-1)) showed the best performance of 26.9 wt. % (6.11 mmol/g), with a stable capacity over 6 consecutive cycles. The hybrid sample also showed 3 times better performance than the raw C3N4. In addition, it was observed that the hydrothermal C3N4 synthesis method demonstrated improved chemical properties and adsorption performance than the conventional dry pyrolysis method. In summary, the performance of hybrid samples depends on the different interactive factors of surface area, pore size and distribution, basicity, concentration of amine precursors, ratio of amines precursors to metal oxide, and framework stability.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5583
Author(s):  
Paweł Fabiś ◽  
Bartosz Flekiewicz

This article presents a detailed analysis of the potential of dimethyl ether (DME) fuel applications in SI engines. This paper presents the tests results completed on an 1.6-dm3 Opel Astra engine fueled by gaseous fuel as a mixture of LPG and DME. Dimethyl ether is a fuel with properties similar to liquid LPG fuel. In addition, DME is very well miscible with LPG, hence the possibility of creating a mixture with any DME divisions. The assessment of the possibility of using DME as a component of the mixture was carried out with the use of a chassis dynamometer and equipment, enabling an analysis of the changes taking place inside the cylinder. The results of the analyses are the parameters of the thermodynamic processes describing changes in the engine cylinder.


2021 ◽  
Vol 80 (4) ◽  
pp. 191-200
Author(s):  
E. E. Kossov ◽  
V. V. Asabin ◽  
A. G. Silyuta ◽  
A. N. Zhuravlev ◽  
L. E. Kossova

The Government of the Russian Federation has set the task of expanding the field of application of gaseous fuels in the national economy. In accordance with this task, an agreement of June 17, 2016 was developed on cooperation between PJSC Gazprom, JSC Russian Railways, JSC Sinara Group, JSC Transmashholding in the use of natural gas as a motor fuel, which provides for the production of shunting gas locomotives and mainline diesel locomotives and gas turbine locomotives. This work is a continuation of the work begun in the 1990s to create, fine-tune and test diesel locomotives using natural gas as a motor fuel. The conversion of diesel locomotives to gaseous fuel can be carried out in two ways: creation of diesel locomotives with gas piston engines and the modernization of diesel locomotives of the existing fleet by converting the diesel engines of these locomotives to use the gas-diesel cycle. A comparison of these options is given and solutions are proposed that allow using gas-diesel cycle on diesel locomotives. Mathematical models for calculating the performance indicators of a gas-diesel generator plant in operating modes and separately for the fuel supply process are presented, their features and some calculation results are presented. The experimentally determined reasons for the impossibility of operation of the power plant in the gas-diesel cycle of a shunting diesel locomotive based on TEM18 below the fourth position of the driver's controller are theoretically substantiated. The minimum required structural changes to the standard fuel equipment are determined, which are necessary to ensure stable operation of a diesel locomotive on gaseous fuel. A comparative assessment of the efficiency of converting diesel locomotives to gaseous fuel is carried out and the cost of fuel consumed per hour of operation is determined, depending on the degree of fuel replacement with gas when the locomotive is operating in average operating modes.


Author(s):  
Alexandr Bogomolov ◽  
Alexandr Nikiforov ◽  
Ultuar Zhalmagambetova

The problems of providing various types of energy to remote isolated settlements, territorial and climatic features consideration are reviewed, a three – pipe water supply system, a technology working on solid fuel for heat and electricity supply adapted to the conditions of a particular village are proposed. The use of the proposed methods of supply will reduce the cost of electricity, heat, water and gaseous fuel. Which will be quite acceptable for families with medium and small incomes. The described technology for producing gas with an acceptable calorific value is based on partial heat treatment of coal. The presence of gaseous fuel allows you to transfer cooking to the supply of fuel from a single.


Author(s):  
Valentin Vytiaganets ◽  
Valeriy Shaporev ◽  
Inna Pitak ◽  
Antonina Baranova

The article analyzes shaft furnaces for lime production. According to the method of firing, shaft furnaces are of bulk type, semi-gas type, gaseous and liquid fuels. The disadvantages of the operation of the main modern kilns during lime burning have been established. The main aggregates for high-tonnage lime production are mine lime kilns, in which blast furnace coke or anthracite, or high-quality coals are used as fuel. Generally, lean fuels are used in industries where, together with the technological cycle, carbon dioxide is used, which are contained in flue gases with a concentration of 36−40%mass. The data on the operation of six furnaces on the territory of Ukraine at the enterprises showed that gas shaft furnaces of cylindrical and slotted type with a straight-lining profile were widely used. The parameters of such furnaces are productivity from 100 to 250 tons per day, shaft diameter from 3.2 to 5.4 m, and height 6−8 furnace diameters. Most often, they use heating systems with central and two rows of peripheral injection burners without protrusion. The most critical part of all furnaces is the distribution of gas flow rates over the cross-section of the furnace shaft and the depth of radial penetration of the gas flow into the material layer. Calculations of τ1 and τП were carried out in the following way: for τ1, the temperature range of the medium was chosen from 1300 to 250−300 °С, τox − the temperature range for the material was chosen from 1000 to 100 °С and the density of the product was taken into account at the degree of decomposition of limestone 98% (=1700 kg/m3). In the preheating zone, the limiting stage is the supply of heat from the gas to the lump material, and at the same time can be taken equal to ⁓400−450 kJ/(m2∙h∙К) and τ1 is estimated as 0.8÷1 hour. The total residence time of the material in the furnace (in the heating zone and in the firing zone) is estimated at 1.4÷1.5 hours. The average speed of material movement in the cylindrical part of the furnace is estimated as 0.004 m/s, which makes it possible to consider the filtering layer conditionally stationary. These characteristics affect the quality of limestone and the uniformity of limestone firing that was the basis for the design of roasting shaft kilns using gaseous fuel.


Sign in / Sign up

Export Citation Format

Share Document