The effects of strain rate and curvature on surface density function transport in turbulent premixed methane–air and hydrogen–air flames: A comparative study

2008 ◽  
Vol 154 (1-2) ◽  
pp. 259-280 ◽  
Author(s):  
N CHAKRABORTY ◽  
E HAWKES ◽  
J CHEN ◽  
R CANT
2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Nilanjan Chakraborty ◽  
Markus Klein ◽  
R. S. Cant

The effects of turbulent Reynolds number on the statistical behaviour of the displacement speed have been studied using three-dimensional Direct Numerical Simulation of statistically planar turbulent premixed flames. The probability of finding negative values of the displacement speed is found to increase with increasing turbulent Reynolds number when the Damköhler number is held constant. It has been shown that the statistical behaviour of the Surface Density Function, and its strain rate and curvature dependence, plays a key role in determining the response of the different components of displacement speed. Increasing the turbulent Reynolds number is shown to reduce the strength of the correlations between tangential strain rate and dilatation rate with curvature, although the qualitative nature of the correlations remains unaffected. The dependence of displacement speed on strain rate and curvature is found to weaken with increasing turbulent Reynolds number when either Damköhler or Karlovitz number is held constant, but the qualitative nature of the correlation remains unaltered. The implications of turbulent Reynolds number effects in the context of Flame Surface Density (FSD) modelling have also been addressed, with emphasis on the influence of displacement speed on the curvature and propagation terms in the FSD balance equation.


Sign in / Sign up

Export Citation Format

Share Document