scholarly journals Physics-aware neural network flame closure for combustion instability modeling in a single-injector engine

2022 ◽  
Vol 240 ◽  
pp. 111973
Author(s):  
Zeinab Shadram ◽  
Tuan M. Nguyen ◽  
Athanasios Sideris ◽  
William A. Sirignano
Author(s):  
Tryambak Gangopadhyay ◽  
Anthony Locurto ◽  
Paige Boor ◽  
James B. Michael ◽  
Soumik Sarkar

Detecting the transition to an impending instability is important to initiate effective control in a combustion system. As one of the early applications of characterizing thermoacoustic instability using Deep Neural Networks, we train our proposed deep convolutional neural network (CNN) model on sequential image frames extracted from hi-speed flame videos by inducing instability in the system following a particular protocol — varying the acoustic length. We leverage the sound pressure data to define a non-dimensional instability measure used for applying an inexpensive but noisy labeling technique to train our supervised 2D CNN model. We attempt to detect the onset of instability in a transient dataset where instability is induced by a different protocol. With the continuous variation of the control parameter, we can successfully detect the critical transition to a state of high combustion instability demonstrating the robustness of our proposed detection framework, which is independent of the combustion inducing protocol.


Author(s):  
Seungtaek Oh ◽  
Jaehyeon Kim ◽  
Yongmo Kim

In this study, new methodologies are introduced to analyze combustion instability in a lab-scale swirled combustor. First, with the help of radial basis function neural network (RBFNN), the flame describing function (FDF) is effectively modeled from a limited number of experimental data. This neural-network-based FDF method is able to generate more refined FDF data in an extended range. In addition, instead of a perforated plate with round holes, a slotted plate is utilized as a stabilization device. In this approach, the acoustic impedance of a slotted plate is modeled by the Dowling approach, and the dimensions of a slotted plate are optimized by simulated annealing (SA) algorithm to get the highest average absorption coefficient in a given frequency range. The present RBFNN-based FDF approach yields the reasonably good agreements with the measurements in terms of the limit-cycle velocity perturbation ratio and resonant frequency. It is also found that a slotted plate optimized by SA algorithm is quite effective to attenuate combustion instability. Numerical results obtained in this study confirm that these new methodologies are quite reliable and widely applicable for the analysis of combustion instability encountered in practical combustion systems.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document