Analysis of critical buckling load of laminated composites plate with different boundary conditions using FEM and analytical methods

2009 ◽  
Vol 45 (4) ◽  
pp. 1006-1015 ◽  
Author(s):  
Tamer Özben
2006 ◽  
Vol 306-308 ◽  
pp. 55-60
Author(s):  
I.S. Putra ◽  
T. Dirgantara ◽  
Firmansyah ◽  
M. Mora

In this paper, buckling analysis of cylindrical shells with a circumferential crack is presented. The analyses were performed both numerically using FEM and experimentally. The numerical analyses and experiments were conducted for several crack lengths and radius of curvature, and two different boundary conditions were applied, i.e. simply support and clamp in all sides. The results show the effect of the presence of crack to the critical buckling load of the shells. There are good agreements between experimental and numerical results.


2014 ◽  
Vol 575 ◽  
pp. 185-190
Author(s):  
M. Vasumathi ◽  
Murali Vela

Carbon reinforced aluminium laminate (CARAL) is a fibre metal laminate which consists of layers of carbon fibre and thin layers of aluminium. Buckling strength of CARAL under various support conditions is studied in this paper. Since CARAL is composed of fibre and metal, the pattern of failure of the laminate under compressive loads is truly imperative. The compressive buckling strength depends on geometrical parameters like length and width of the specimen and the sequence in which the layers are stacked. It also depends on the boundary condition. In this study, the critical buckling load is determined by varying the parameters such as aspect ratio (length/width), stacking sequence and boundary condition. Two different boundary conditions are considered, simply supported and fixed support condition. Numerical simulation analysis shows a maximum deviation of 16.72% from experimental results. The different failure modes executed by the laminate under compressive loading are also determined. The critical buckling load of CARAL constrained on all sides is evaluated numerically for different boundary conditions. Buckling load, in this case, takes maximum value when CARAL is clamped on all sides whereas it takes minimum value when the plate is simply supported on three sides keeping the fourth side fixed.


2006 ◽  
Vol 306-308 ◽  
pp. 49-54
Author(s):  
T. Dirgantara ◽  
I.S. Putra ◽  
A.A. Sucipto ◽  
A. Jusuf

The presence of cracks or similar imperfections can considerably reduce the buckling load of a shell structure. In this paper, buckling analysis of cylindrical shells with a longitudinal crack is presented. Numerical buckling analyses of cylindrical shells were performed using FEM, and verified by experiment. The numerical analyses and experiments were conducted for several crack lengths and radius of curvature, and two different boundary conditions were applied, i.e. simply support and clamp in all sides. The results show the effect of the presence of crack to the critical buckling load of the shells. There are good agreements between experimental and numerical results.


Author(s):  
A Naderi ◽  
A R Saidi

In this study, an analytical solution for the buckling of a functionally graded annular sector plate resting on an elastic foundation is presented. The buckling analysis of the functionally graded annular sector plate is investigated for two typical, Winkler and Pasternak, elastic foundations. The equilibrium and stability equations are derived according to the Kirchhoff's plate theory using the energy method. In order to decouple the highly coupled stability equations, two new functions are introduced. The decoupled equations are solved analytically for a plate having simply supported boundary conditions on two radial edges. Satisfying the boundary conditions on the circular edges of the plate yields an eigenvalue problem for finding the critical buckling load. Extensive results pertaining to critical buckling load are presented and the effects of boundary conditions, volume fraction, annularity, plate thickness, and elastic foundation are studied.


2017 ◽  
Vol 88 (9) ◽  
pp. 1002-1012 ◽  
Author(s):  
Indrakumar Vetharaniam ◽  
Surinder Tandon ◽  
Jeffrey E Plowman ◽  
Duane P Harland

The sensation of prickle from textile garments is directly related to the force that a fiber protruding from the fabric surface can exert on the skin without buckling – its critical buckling load (CBL). Finite element modeling (FEM) has previously been used in the literature to predict CBLs for a set of 25 fibers with different along-fiber morphology. With a view to high-throughput analysis of fibers, we investigated two analytical methods that were potentially faster and less computationally intensive than FEM and applied them to calculate CBLs for the same set of fibers. In addition, we tested a numerical integration and gradient search (NIGS) method that we developed by adapting a previously published, non-FEM, numerical approach. The analytical methods that we tested were either inadequately formulated or prone to instability. Our NIGS method was more reliable that the analytical methods (but slower to compute), and its results appeared more accurate than the published FEM results, based on an inconsistency metric that we developed. The published FEM results and the NIGS predictions agreed within 5% for 60% of the fibers, and within 10% for 72% of the fibers (with differences ranging from 0.4% to 19.1%) and generally showed qualitative agreement on the response of CBL to fiber shape, with some notable exceptions. The response of CBL to dimensional variation was complex. This, and the inconsistency between methods, highlights the need for caution when analyzing complicated biological structures, such as wool, and the value of verifying the reliability of any predictions from any approach.


1969 ◽  
Vol 36 (4) ◽  
pp. 784-790 ◽  
Author(s):  
J. W. Hutchinson ◽  
J. C. Frauenthal

The initial postbuckling behavior of axially stiffened cylindrical shells is studied with a view to ascertaining the extent to which various effects such as stringer eccentricity, load eccentricity, and barreling influence the imperfection-sensitivity of these structures to buckling. In most cases, when these effects result in an increase in the buckling load of the perfect structure, they increase its imperfection-sensitivity as well. In some instances, however, barreling can significantly raise the buckling load of the shell while reducing its imperfection-sensitivity. The analysis, which is based on Koiter’s general theory of postbuckling behavior and is made within the context of Ka´rma´n-Donnell-type theory, takes into account nonlinear prebuckling deformations and different boundary conditions.


2019 ◽  
Vol 24 (2) ◽  
pp. 271-283
Author(s):  
Abhinav Kumar ◽  
Sarat Kumar Panda ◽  
Sekhar Chandra Dutta

Pre-buckling vibration and buckling behaviour of composite skew plates subjected to linearly varying in-plane edge loading with different boundary conditions are studied. The total energy functional of the skew plate mapped from physical domain to computational domain over which a set of orthonormal polynomials satisfying the essential boundary conditions is generated by Gram-Schmidt orthogonalization process. Using Rayleigh-Ritz method in conjunction with Boundary Characteristics Orthonormal Polynomials, the total energy functional is converted into sets of algebraic equations for static stability problems and ordinary differential equation for free vibration problem. Pre-buckling vibration frequencies of the stressed skew plate are obtained by solving associated linear eigen value problem for free vibration and solution of the eigen value problem for static case results critical buckling load. From different parametric study, it is observed that the pre-buckling vibration frequency and critical buckling load increase with the increase of skew angle and edge restraint.


Sign in / Sign up

Export Citation Format

Share Document