scholarly journals Grain size distribution under simultaneous grain boundary migration and grain rotation in two dimensions

2016 ◽  
Vol 121 ◽  
pp. 209-216 ◽  
Author(s):  
Selim Esedoḡlu
1986 ◽  
Vol 77 ◽  
Author(s):  
Uwe Köster ◽  
Paul S. Ho

ABSTRACTIn a number of vapor deposited aluminium alloys grain growth has been investigated systematically by means of quantitative electron microscopy and found to proceed not by grain boundary migration, but by grain coalescence. Parameters influencing the observed mode of grain growth will be discussed with respect to the formation of microstructures with optimal resistance to electromigration, i.e. microstructures with large grain size, high homogeneity in the grain size distribution as well as a strong texture.Analyses of grain size distribution after annealing indicate a strong retardation in grain growth by the solute in all aluminium alloys except Al(Cu). Relative large grain sizes and very small lognormal standard deviations have been observed in Al-l%Cu as well as ternary Al(Cu,Hf) thin films.


2011 ◽  
Vol 409 ◽  
pp. 597-602
Author(s):  
Yuichi Mizuno ◽  
Kenji Okushiro ◽  
Yoshiyuki Saito

Grain boundary migration in materials under severe plastic deformation was simulated by the phase field methods. The interface energy and dislocation density on growth kinetics were simulated on systems of 2-dimensional lattice. .In inhomogeneous systems grain size distributions in simulated grain structures were binodal distributions. The classification of the solution of differential equations based on the mean-field Hillert model describing temporal evolution of the scaled grain size distribution function was in good agreement with those given by the Computer simulations. Effect of dislocation on thermodynamic stability was taken into consideration. Dislocation density distribution was calculated by a equation based on the diffusion-reaction equation.. Scaled grain size distribution was known to be affected by the dislocation.


2021 ◽  
Author(s):  
Mark Coleman ◽  
Bernhard Grasemann ◽  
David Schneider ◽  
Konstantinos Soukis ◽  
Riccardo Graziani

<p>Microstructures may be used to determine the processes, conditions and kinematics under which deformation occurred. For a given set of these variables, different microstructures are observed in various materials due to the material’s physical properties. Dolomite is a major rock forming mineral, yet the mechanics of dolomite are understudied compared to other ubiquitous minerals such as quartz, feldspar, and calcite. Our new study uses petrographic, structural and electron back scatter diffraction analyses on a series of dolomitic and calcitic mylonites to document differences in deformation styles under similar metamorphic conditions. The Attic-Cycladic Crystalline Complex, Greece, comprises a series of core complexes wherein Miocene low-angle detachment systems offset and juxtapose a footwall of high-pressure metamorphosed rocks against a low-grade hanging wall. This recent tectonic history renders the region an excellent natural laboratory for studying the interplay of the processes that accommodate deformation. The bedrock of Mt. Hymittos, Attica, preserves a pair of ductile-then-brittle normal faults dividing a tripartite tectonostratigraphy. Field observations, mineral assemblages and observable microstructures suggests the tectonic packages decrease in metamorphic grade from upper greenschist facies (~470 °C at 0.8 GPa) in the stratigraphically lowest package to sub-greenschist facies in the stratigraphically highest package. Both low-angle normal faults exhibit cataclastic fault cores that grade into the schists and marbles of their respective hanging walls. The middle and lower tectonostratigraphic packages exhibit dolomitic and calcitic marbles that experienced similar geologic histories of subduction and exhumation. The mineralogically distinct units (calcite vs. dolomite) of the middle package deformed via different mechanisms under the same conditions within the same package and may be contrasted with mineralogically similar units that deformed under higher pressure and temperature conditions in the lower package. In the middle unit, dolomitic rocks are brittlely deformed. Middle unit calcitic marble are mylonitic to ultramylonitic with average grain sizes ranging from 30 to 8 μm. These mylonites evince grain-boundary migration and grain size reduction facilitated by subgrain rotation. Within the lower package, dolomitic and calcitic rocks are both mylonitic to ultramylonitic with grain sizes ranging from 28 to 5 μm and preserve clear crystallographic preferred orientation fabrics. Calcitic mylonites exhibit deformation microstructures similar to those of the middle unit. Distinctively, the dolomitic mylonites of the lower unit reveal ultramylonite bands cross-cutting and overprinting an older coarser mylonitic fabric. Correlated missorientation angles suggest these ultramylonites show evidence for grain size reduction accommodated by microfracturing and subgrain rotation. In other samples the dolomitic ultramylonite is the dominant fabric and is overprinting and causing boudinage of veins and relict coarse mylonite zones. Isolated interstitial calcite grains within dolomite ultramylonites are signatures of localized creep-cavitation processes. Following grain size reduction, grain boundary sliding dominantly accommodated further deformation in the ultramylonitic portions of the samples as indicated by randomly distributed correlated misorientation angles. This study finds that natural deformation of dolomitic rocks may occur by different mechanisms than those identified by published experiments; notably that grain-boundary migration and subgrain rotation may be active in dolomite at much lower temperatures than previously suggested.</p>


2019 ◽  
Vol 178-179 ◽  
pp. 1-18 ◽  
Author(s):  
Jakub Mikula ◽  
Shailendra P. Joshi ◽  
Tong-Earn Tay ◽  
Rajeev Ahluwalia ◽  
Siu Sin Quek

2011 ◽  
Vol 172-174 ◽  
pp. 1128-1133 ◽  
Author(s):  
Eric A. Jägle ◽  
Eric J. Mittemeijer

The kinetics of phase transformations for which nucleation occurs on parent-micro-structure grain boundaries, and the resulting microstructures, were investigated by means ofgeometric simulations. The influences of parent microstructure grain-boundary area density,parent grain-size distribution and parent→product kinetics were analysed. Additionally, thesimulated kinetics were compared with predictions from two kinetic models, namely a modelproposed for spatially random nucleation and a model proposed for grain-boundary nucleation.It was found that the simulated transformed fraction as function of time lies in between the twomodel predictions for all investigated parent microstructures and parent→product kinetics.


2004 ◽  
Vol 467-470 ◽  
pp. 1069-1074 ◽  
Author(s):  
Jiří Kroc

This paper try to elucidate some aspects of the impact of using two different types of computational lattices on the solution of simple models like, for example, grain boundary migration and/or dynamic recrystallization.Not surprisingly, the final solution is obviously affected by anisotropy of used lattices but as we know, they are computational lattices.Ho wever, a material itself has its own anisotropy of its lattice probably different from those lattices used in model.Therefore, the main task in nowadays simulations is to get rid of the influence of computational lattice and to achieve the properties of the lattice of the simulated material.


1994 ◽  
Vol 40 (134) ◽  
pp. 46-55
Author(s):  
C.J. L. Wilson ◽  
Y. Zhang

AbstractAn examination of both experiments and computer models of polycrystalline ice undergoing a simple shear suggests that there is good agreement. The model has correctly reproduced the deformational and microstructural features caused by glide on (0001) in the ice aggregates. This success is particularly prominent for those ice grains with a lattice orientation suitable for hard or easy glide or kinking, and where there is a sub-horizontal с axis and a larger grain-size. A limitation may be that the model cannot explicitly simulate recrystallization and grain-boundary migration, which are two other important processes operating jointly with glide in experimentally deformed ice. However, through the use of the models, it is possible to show how kinematic factors can control the processes of recrystallization. The localization of recrystallization in the polycrystalline ice aggregate is determined by the stress and strain variations between neighbouring grains.


1994 ◽  
Vol 40 (134) ◽  
pp. 46-55 ◽  
Author(s):  
C.J. L. Wilson ◽  
Y. Zhang

AbstractAn examination of both experiments and computer models of polycrystalline ice undergoing a simple shear suggests that there is good agreement. The model has correctly reproduced the deformational and microstructural features caused by glide on (0001) in the ice aggregates. This success is particularly prominent for those ice grains with a lattice orientation suitable for hard or easy glide or kinking, and where there is a sub-horizontalсaxis and a larger grain-size. A limitation may be that the model cannot explicitly simulate recrystallization and grain-boundary migration, which are two other important processes operating jointly with glide in experimentally deformed ice. However, through the use of the models, it is possible to show how kinematic factors can control the processes of recrystallization. The localization of recrystallization in the polycrystalline ice aggregate is determined by the stress and strain variations between neighbouring grains.


1985 ◽  
Vol 63 (6) ◽  
pp. 716-718 ◽  
Author(s):  
S. Chandrasekhar ◽  
S. Martinuzzi ◽  
F. Z. Nataren

For low Zn concentrations i.e., x < 0.1, the performance of the Cd1−xZnxS–Cu2S solar cells can be improved by reducing the grain-boundary recombination. This has been achieved by growing well-oriented, homogeneous, ternary compound films.It was found that the Cd1−xZnxS films grown on the polycrystalline CdS films achieved the same larger grain size as that of the base layer. These films had fewer misorientations and had a unimodal grain-size distribution. There is a continuity in the crystallites from the CdS base to the Cd1−xZnxS overlayer, and the bifilms thus grown are less resistive than Cd1−xZnxS single layers.


Sign in / Sign up

Export Citation Format

Share Document