Theoretical predictive screening of noble-metal-containing M3AuC2 (M = Ti, V, and Cr) MAX phases

2022 ◽  
Vol 202 ◽  
pp. 111013
Author(s):  
Muhammad Waqas Qureshi ◽  
Xinxin Ma ◽  
Guangze Tang ◽  
Ramesh Paudel ◽  
Durga Paudyal
Keyword(s):  
Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Author(s):  
Yaru Li ◽  
Yu-Quan Zhu ◽  
Weili Xin ◽  
Song Hong ◽  
Xiaoying Zhao ◽  
...  

Rationally designing low-content and high-efficiency noble metal nanodots offers opportunities to enhance electrocatalytic performances for water splitting. However, the preparation of highly dispersed nanodots electrocatalysts remains a challenge. Herein, we...


2018 ◽  
Vol 77 (5) ◽  
pp. 383-389
Author(s):  
N. P. Stognii ◽  
N. K. Sakhnenko
Keyword(s):  

2020 ◽  
Vol 16 ◽  
Author(s):  
Chanchan Fan ◽  
Peng Zhang ◽  
Ranran Wang ◽  
Yezhu Xu ◽  
Xingrui Sun ◽  
...  

: A new kind of two-dimensional (2D) materials MXene (early transition metal carbides, nitrides and carbonitrides) is obtained by selective etching the A element from the MAX phases. MXene exhibits both the metallic conductivity and the hydrophilic nature due to its metal layer structure and hydroxyl or oxygen terminated surfaces. This review provides an overview of the MXene used in the electrolytes and electrodes for the fuel cells and water splitting. MXene with functional groups termination could construct ion channels that significantly benefits to the ion conductivity through the electrolyte. The metal supported by MXene interaction offers electronic, compositional, and geometric effects that could enhance the catalytic activity and stability. MXene have already shown promising performance for fuel cells and water electrolysis. Herein, the etching and intercalation methods of MXene in recent years are summarized. The applications of MXene for fuel cells electrolyte, catalyst and water splitting catalyst are revealed to provide more brief idea for MXene used as new energy materials.


2019 ◽  
Vol 55 (5) ◽  
pp. 832-838 ◽  
Author(s):  
T. N. Matveeva ◽  
V. V. Getman ◽  
M. V. Ryazantseva ◽  
A. Yu. Karkeshkina ◽  
L. B. Lantsova

1981 ◽  
Vol 46 (11) ◽  
pp. 2657-2662
Author(s):  
Zdeněk Prokop ◽  
Karel Setínek

Some additional data about properties and applicability of a styrene-divinylbenzene polymer catalyst containing acidic and redox functional groups are reported. It is shown that the catalysts of this type can be prepared reproducibly and exhibit catalytic properties comparable to the properties of noble metal catalysts.


Sign in / Sign up

Export Citation Format

Share Document