Identification of citrus disease using color texture features and discriminant analysis

2006 ◽  
Vol 52 (1-2) ◽  
pp. 49-59 ◽  
Author(s):  
R. Pydipati ◽  
T.F. Burks ◽  
W.S. Lee
2000 ◽  
Vol 43 (2) ◽  
pp. 441-448 ◽  
Author(s):  
T. F. Burks ◽  
S. A. Shearer ◽  
F. A. Payne

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Caio B. Wetterich ◽  
Ratnesh Kumar ◽  
Sindhuja Sankaran ◽  
José Belasque Junior ◽  
Reza Ehsani ◽  
...  

The overall objective of this work was to develop and evaluate computer vision and machine learning technique for classification of Huanglongbing-(HLB)-infected and healthy leaves using fluorescence imaging spectroscopy. The fluorescence images were segmented using normalized graph cut, and texture features were extracted from the segmented images using cooccurrence matrix. The extracted features were used as an input into the classifier, support vector machine (SVM). The classification results were evaluated based on classification accuracies and number of false positives and false negatives. The results indicated that the SVM could classify HLB-infected leaf fluorescence intensities with up to 90% classification accuracy. Though the fluorescence intensities from leaves collected in Brazil and the USA were different, the method shows potential for detecting HLB.


2018 ◽  
Vol 61 (5) ◽  
pp. 1497-1504
Author(s):  
Zhenjie Wang ◽  
Ke Sun ◽  
Lihui Du ◽  
Jian Yuan ◽  
Kang Tu ◽  
...  

Abstract. In this study, computer vision was used for the identification and classification of fungi on moldy paddy. To develop a rapid and efficient method for the classification of common fungal species found in stored paddy, computer vision was used to acquire images of individual colonies of growing fungi for three consecutive days. After image processing, the color, shape, and texture features were acquired and used in a subsequent discriminant analysis. Both linear (i.e., linear discriminant analysis and partial least squares discriminant analysis) and nonlinear (i.e., random forest and support vector machine [SVM]) pattern recognition models were employed for the classification of fungal colonies, and the results were compared. The results indicate that when using all of the features for three consecutive days, the performance of the nonlinear tools was superior to that of the linear tools, especially in the case of the SVM models, which achieved an accuracy of 100% on the calibration sets and an accuracy of 93.2% to 97.6% on the prediction sets. After sequential selection of projection algorithm, ten common features were selected for building the classification models. The results showed that the SVM model achieved an overall accuracy of 95.6%, 98.3%, and 99.0% on the prediction sets on days 2, 3, and 4, respectively. This work demonstrated that computer vision with several features is suitable for the identification and classification of fungi on moldy paddy based on the form of the individual colonies at an early growth stage during paddy storage. Keywords: Classification, Computer vision, Fungal colony, Feature selection, SVM.


Author(s):  
Priyesh Tiwari ◽  
Shivendra Nath Sharan ◽  
Kulwant Singh ◽  
Suraj Kamya

Content based image retrieval (CBIR), is an application of real-world computer vision domain where from a query image, similar images are searched from the database. The research presented in this paper aims to find out best features and classification model for optimum results for CBIR system.Five different set of feature combinations in two different color domains (i.e., RGB & HSV) are compared and evaluated using Neural Network Classifier, where best results obtained are 88.2% in terms of classifier accuracy. Color moments feature used comprises of: Mean, Standard Deviation,Kurtosis and Skewness. Histogram features is calculated via 10 probability bins. Wang-1k dataset is used to evaluate the CBIR system performance for image retrieval.Research concludes that integrated multi-level 3D color-texture feature yields most accurate results and also performs better in comparison to individually computed color and texture features.


Sign in / Sign up

Export Citation Format

Share Document