Early optical detection of infection with brown rust in winter wheat by chlorophyll fluorescence excitation spectra

2018 ◽  
Vol 146 ◽  
pp. 77-85 ◽  
Author(s):  
Ylva Katharina Tischler ◽  
Eiko Thiessen ◽  
Eberhard Hartung
1994 ◽  
Vol 119 (5) ◽  
pp. 1006-1013 ◽  
Author(s):  
J. Lorene Embry ◽  
Eugene A. Nothnagel

Photosynthetic light harvesting was investigated under low-light stress conditions relevant to the problem of interior longevity of potted ornamental plants. Comparisons of leaf pigment levels and chlorophyll fluorescence excitation spectra were made for `Gutbier V-10 Amy' poinsettia (Euphorbia pulcherrima Willd.), which has poor interior longevity, and `Eckespoint Lilo' poinsettia, which has superior interior longevity. The results show that `Eckespoint Lilo' had higher total chlorophyll content per leaf area and lower chlorophyll a: chlorophyll b ratio than `Gutbier V-10 Amy'. In low-light stress, `Eckespoint Lilo' retained its chlorophyll or even accumulated higher levels than in high light, while `Gutbier V-10 Amy' did not exhibit higher chlorophyll retention in low light. Both cultivars acclimatized to low-light stress by decreasing the chlorophyll a: chlorophyll b ratio, and this acclimatization was evident sooner in younger, outer-canopy leaves above the pinch than in older leaves below the pinch. Both cultivars also increased the chlorophyll: carotenoid ratio in low light. These changes in pigment composition, which were essentially structural changes, were reflected in functional changes in light harvesting, as assessed by measurements of chlorophyll fluorescence excitation spectra.


1999 ◽  
Vol 103 (41) ◽  
pp. 8207-8212 ◽  
Author(s):  
Chuji Wang ◽  
Liat G. Shemesh ◽  
Wei Deng ◽  
Michael D. Lilien ◽  
Theodore S. Dibble

2018 ◽  
Vol 73 (3) ◽  
pp. 304-312 ◽  
Author(s):  
Stefan T. Faulkner ◽  
Cameron M. Rekully ◽  
Eric M. Lachenmyer ◽  
Ergun Kara ◽  
Tammi L. Richardson ◽  
...  

Phytoplankton play a vital role as primary producers in aquatic ecosystems. One common approach to classifying phytoplankton is fluorescence excitation spectroscopy, which leverages the variation in types and concentrations of pigments among different phytoplankton taxonomic groups. Here, we used a fluorescence imaging photometer to measure excitation ratios (“signatures”) of single cells and bulk cultures of seven differently pigmented phytoplankton species as they progressed from nitrogen N-replete to N-depleted conditions. Our objective was to determine whether N depletion alters the fluorescence excitation signature of each species and, if so, how quickly they recover when N (as nitrate) was resupplied, because these factors affect our ability to classify the species correctly. Of the seven species studied, only Proteomonas sulcata, a marine cryptophyte, showed measurable changes in single-cell fluorescence excitation ratios and bulk fluorescence excitation spectra. These changes were likely due to decreases in the cellular concentration of phycoerythrin, a N-rich pigment, as N became scarce. Within 3 h of resupply of N, fluorescence signatures began returning to pre-depletion values and were indistinguishable from N-replete cells by 80 h after resupply. These data suggest that our classification approach is robust for non-PE containing phytoplankton. PE-containing phytoplankton might exhibit systematic changes in their signatures depending on their level of N depletion, but this could be detected and the phytoplankton re-classified following a few hours of incubation in N replete conditions.


1971 ◽  
Vol 24 (9) ◽  
pp. 1797 ◽  
Author(s):  
RJ McDonald ◽  
BK Selinger

Exciplexes may be formed by exciting either partner of a given electron donor-acceptor pair. As the formation of such exciplexes is reversible, dissociation may lead to excitation energy transfer. ��� The temperature dependence of fluorescence excitation spectra has proved to be a powerful tool for exploring these systems.


Sign in / Sign up

Export Citation Format

Share Document