Evaluation of proximal sensing technologies for mapping bovine urine patches under grazing pastures

2021 ◽  
Vol 188 ◽  
pp. 106309
Author(s):  
Ben Jolly ◽  
Jiafa Luo ◽  
Promil Mehra ◽  
Patrick Forrestal ◽  
Macdara O'Neill ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4550
Author(s):  
Huajian Liu ◽  
Brooke Bruning ◽  
Trevor Garnett ◽  
Bettina Berger

The accurate and high throughput quantification of nitrogen (N) content in wheat using non-destructive methods is an important step towards identifying wheat lines with high nitrogen use efficiency and informing agronomic management practices. Among various plant phenotyping methods, hyperspectral sensing has shown promise in providing accurate measurements in a fast and non-destructive manner. Past applications have utilised non-imaging instruments, such as spectrometers, while more recent approaches have expanded to hyperspectral cameras operating in different wavelength ranges and at various spectral resolutions. However, despite the success of previous hyperspectral applications, some important research questions regarding hyperspectral sensors with different wavelength centres and bandwidths remain unanswered, limiting wide application of this technology. This study evaluated the capability of hyperspectral imaging and non-imaging sensors to estimate N content in wheat leaves by comparing three hyperspectral cameras and a non-imaging spectrometer. This study answered the following questions: (1) How do hyperspectral sensors with different system setups perform when conducting proximal sensing of N in wheat leaves and what aspects have to be considered for optimal results? (2) What types of photonic detectors are most sensitive to N in wheat leaves? (3) How do the spectral resolutions of different instruments affect N measurement in wheat leaves? (4) What are the key-wavelengths with the highest correlation to N in wheat? Our study demonstrated that hyperspectral imaging systems with satisfactory system setups can be used to conduct proximal sensing of N content in wheat with sufficient accuracy. The proposed approach could reduce the need for chemical analysis of leaf tissue and lead to high-throughput estimation of N in wheat. The methodologies here could also be validated on other plants with different characteristics. The results can provide a reference for users wishing to measure N content at either plant- or leaf-scales using hyperspectral sensors.


2017 ◽  
Vol 51 (10) ◽  
pp. 5630-5641 ◽  
Author(s):  
Raphael A. Viscarra Rossel ◽  
Craig R. Lobsey ◽  
Chris Sharman ◽  
Paul Flick ◽  
Gordon McLachlan

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1409
Author(s):  
Nicholas Todd Anderson ◽  
Kerry Brian Walsh ◽  
Dvoralai Wulfsohn

The management and marketing of fruit requires data on expected numbers, size, quality and timing. Current practice estimates orchard fruit load based on the qualitative assessment of fruit number per tree and historical orchard yield, or manually counting a subsample of trees. This review considers technological aids assisting these estimates, in terms of: (i) improving sampling strategies by the number of units to be counted and their selection; (ii) machine vision for the direct measurement of fruit number and size on the canopy; (iii) aerial or satellite imagery for the acquisition of information on tree structural parameters and spectral indices, with the indirect assessment of fruit load; (iv) models extrapolating historical yield data with knowledge of tree management and climate parameters, and (v) technologies relevant to the estimation of harvest timing such as heat units and the proximal sensing of fruit maturity attributes. Machine vision is currently dominating research outputs on fruit load estimation, while the improvement of sampling strategies has potential for a widespread impact. Techniques based on tree parameters and modeling offer scalability, but tree crops are complicated (perennialism). The use of machine vision for flowering estimates, fruit sizing, external quality evaluation is also considered. The potential synergies between technologies are highlighted.


Author(s):  
Abraham Mejia-Aguilar ◽  
Giulio Maria Bianco ◽  
Gaetano Marrocco ◽  
Anna Voegele ◽  
Michiel Jan Van Veelen ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document