Virtual screening using Docking and Molecular Dynamics of cannabinoid analogues against CB1 and CB2 receptors

Author(s):  
Antistio Avíz-Amador ◽  
Neyder Contreras-Puentes ◽  
Jairo Mercado-Camargo
2021 ◽  
Vol 14 (4) ◽  
pp. 357
Author(s):  
Magdi E. A. Zaki ◽  
Sami A. Al-Hussain ◽  
Vijay H. Masand ◽  
Siddhartha Akasapu ◽  
Sumit O. Bajaj ◽  
...  

Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure−Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA–MLR (Genetic Algorithm–Multilinear Regression) model with acceptable statistical performance (R2 = 0.898, Q2loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp2-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole–indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.


2015 ◽  
Vol 93 (8) ◽  
pp. 721-726 ◽  
Author(s):  
Kajetan Juszczak ◽  
Piotr Maciukiewicz

The cannabinoid receptors CB1 and CB2 are localized in the urinary bladder and play a role in the regulation of its function. We investigated the pathomechanisms through which hyperosmolarity induces detrusor overactivity (DO). We compared urinary bladder activity in response to blockade of CB1 and CB2 receptors using AM281 and AM630, respectively, in normal rats and after hyperosmolar stimulation. Experiments were performed on 44 rats. DO was induced by intravesical instillation of hyperosmolar saline. Surgical procedures and cystometry were performed under urethane anaesthesia. The measurements represent the average of 5 bladder micturition cycles. We analysed basal, threshold, and micturition voiding pressure; intercontraction interval; compliance; functional bladder capacity; motility index; and detrusor overactivity index. The blockage of CB1 and CB2 receptors diminished the severity of hyperosmolar-induced DO. In comparison with naïve animals the increased frequency of voiding with no significant effect on intravesical voiding pressure profile was observed as a result of the blockage of CB1 and CB2 receptors. These results demonstrate that hyperosmolar-induced DO is mediated by CB1 and CB2 receptors. Therefore, the cannabinoid pathway could potentially be a target for the treatment of urinary bladder dysfunction.


Sign in / Sign up

Export Citation Format

Share Document